| [1] Yoshino K, Ikari T, Shirakata S, et al. Sharp band edge photoluminescence of high-purity CuInS2 single crystals. Appl. Phys. Lett., 2001, 78(6): 742-745.[2] Lin L H, Wu C C, Lai C H, et al. Controlled deposition of silver indium sulfide ternary semiconductor thin films by chemical bath deposition. Chem. Mater., 2008, 20(13): 4475-4483.[3] Chang C C, Liang C J, Cheng K W. Physical properties and photoresponse of Cu-Ag-In-S semiconductor electrodes created using chemical bath deposition. Sol. Energy Mater. Sol. Cells, 2009, 93(8): 1427-1434.[4] Tian L, Vittal J J. Synthesis and characterization of ternary AgInS2 nanocrystals by dual- and multiple-source methods. New J. Chem., 2007, 31(12): 2083-2087.[5] Yoshino K, Komaki H, Kakeno T, et al. Growth and characterization of p-type AgInS2 crystals. J. Phys. Chem. Solids, 2003, 64(9/10): 1839-1842.[6] Delgado G, Mora A J, Pineda C, et al. Simultaneous Rietveld refinement of three phases in the Ag-In-S semiconducting system from X-ray powder diffraction. Mater. Res. Bull., 2001, 36(13/14): 2507-2517.[7] Yoshino K, Mitani N, Sugiyama M, et al. Optical and electrical properties of AgIn(SSe)2 crystals. Physica B, 2001, 302–303: 349-356.[8] You S H, Lee K J, Jeong T S, et al. Temperature dependence of band gap and photocurrent properties for the AgInS2 epilayers grown by hot wall epitaxy. J. Cryst. Growth, 2002, 245(3/4): 261-266.[9] Tian L, Elim H I, Ji W, et al. One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals. Chem. Commun., 2006(41): 4276-4278.[10] Tian L, Vittal J J. Synthesis and characterization of ternary AgInS2 nanocrystals by dual- and multiple-source methods. New J. Chem., 2007, 31(12): 2083-2087.[11] Wang D S, Zheng W, Hao C H, et al. General synthesis of I–III–VI2 ternary semiconductor nanocrystals. Chem. Commun., 2008(22): 2556-2558.[12] Lei Y Q, Song S Y, Fan W Q, et al. Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property. J. Phys. Chem. C, 2009, 113(4): 1280-1285.[13] Lu Q, Gao Y F, Komarneni S. Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods. J. Am. Chem. Soc., 2004, 126(1): 54-55.[14] Liu S Z, Xiong S L, Bao K Y, et al. Shape-controlled preparation of PbS with various dendritic hierarchical structures with the assistance of L-methionine. J. Phys. Chem. C, 2009, 113(30): 13002-13007.[15] Qu X F, Zhou G T, Yao Q Z, et al. Aspartic-acid-assisted hydrothermal growth and properties of magnetite octahedrons. J. Phys. Chem. C, 2010, 114(1): 284-289.[16] Zhang B, Ye X C, Xie Y, et al. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J. Phys. Chem. B, 2006, 110(18): 8978-8985. [17] Zuo F, Yan S, Zhang B, et al. L-cysteine-assisted aynthesis of PbS nanocube-based pagoda-like hierarchical architectures. J. Phys. Chem. C, 2008, 112(8): 2831-2835.[18] Zhang B, Ye X C, Dai W, et al. Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni3S2 nanostructures grown directly on nickel foils. Chem. Eur. J., 2006, 12(8): 2337-2342.[19] Zuo F, Zhang B, Tang X Z, et al. Porous metastable γ-MnS networks: biomolecule-assisted synthesis and optical-properties. Nanotechnology, 2007, 18(21): 215608.[20] Xiang J H, Cao H Q, Wu Q Z, et al. L-cysteine-assisted self-assembly of complex PbS structures. Cryst. Growth Des., 2008, 8(11): 3935-3940.[21] Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, MN: Perkin-Elmer Corp, 1978.[22] Xiang J H, Cao H Q, Wu Q Z, et al. L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres. J. Phys. Chem. C, 2008, 112(10): 3580-3584.[23] Pan D C, An L J, Sun Z M, et al. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc., 2008, 130(17): 5620-5621.[24] Burford N, Eelman M D, Mahony D E, et al. Definitive identification of L-cysteine and glutathione complexes of bismuth by mass spectrometry: assessing the biochemical fate of bismuth pharmaceutical agents. Chem. Commun., 2003(1): 146-147. |