无机材料学报 ›› 2025, Vol. 40 ›› Issue (5): 521-528.DOI: 10.15541/jim20240441
收稿日期:
2024-10-24
修回日期:
2024-12-22
出版日期:
2025-05-20
网络出版日期:
2025-01-09
通讯作者:
戴世勋, 研究员. E-mail: daishixun@nbu.edu.cn作者简介:
潘雨舟(1993-), 男, 硕士研究生. E-mail: 1907662346@qq.com
基金资助:
PAN Yuzhou(), HE Fajian, XU Lulu, DAI Shixun(
)
Received:
2024-10-24
Revised:
2024-12-22
Published:
2025-05-20
Online:
2025-01-09
Contact:
DAI Shixun, professor. E-mail: daishixun@nbu.edu.cnAbout author:
PAN Yuzhou (1993-), male, Master candidate. E-mail: 1907662346@qq.com
Supported by:
摘要:
3~5 μm中红外激光在大气通信、环境监测、医疗、国防等领域有着广泛的应用。本研究采用熔融-淬冷法在惰性气氛保护手套箱中制备了Dy3+、Yb3+单掺和Dy3+/Yb3+共掺70TeO2-25ZnO-5La2O3系列玻璃样品, 通过差示扫描量热(DSC)法、X射线衍射(XRD)、拉曼光谱、透过光谱以及3 μm波段荧光光谱等测试方法对玻璃的热学和结构特性、羟基含量和中红外发光性能进行了表征。其中, 70TeO2-25ZnO-5La2O3玻璃具有较高的抗析晶稳定性(ΔT=101 ℃)、较低的声子能量(760 cm-1)。980 nm激光二极管(LD)泵浦下Dy3+/Yb3+共掺碲酸盐玻璃产生了3 μm波段宽带荧光发射, 荧光半高宽(FWHM)为326 nm。这主要归因于Yb3+→Dy3+能量传递效率高(98.74%)和3 μm附近较低的羟基吸收系数(0.32 cm-1)。根据Judd-Ofelt和Dexter理论计算了Dy3+离子的自发辐射跃迁概率、荧光分支比等光谱参数, 以及Yb3+→Dy3+能量传递微观参数, 讨论并确定了Yb3+: 2F5/2→Dy3+: 6H7/2, 6F9/2为主要的能量传递通道。研究表明, 低羟基Dy3+/Yb3+共掺TeO2-ZnO-La2O3玻璃可以作为优良的3 μm中红外增益介质。
中图分类号:
潘雨舟, 何法鉴, 徐路路, 戴世勋. 980 nm LD泵浦下Dy3+/Yb3+共掺碲酸盐玻璃3 μm波段中红外宽带发光特性[J]. 无机材料学报, 2025, 40(5): 521-528.
PAN Yuzhou, HE Fajian, XU Lulu, DAI Shixun. Broadband 3 μm Mid-infrared Emission in Dy3+/Yb3+ Co-doped Tellurite Glass under 980 nm LD Excitation[J]. Journal of Inorganic Materials, 2025, 40(5): 521-528.
Component element | Mass percentage/% | Test percentage/% |
---|---|---|
Te | 70.80 | 70 |
Zn | 12.80 | 13 |
La | 11.00 | 11 |
Dy | 2.64 | 3 |
Yb | 2.76 | 3 |
表1 TZL-Dy/Yb样品的标称含量和实际含量
Table 1 Nominal and actual composition of TZL-Dy/Yb sample
Component element | Mass percentage/% | Test percentage/% |
---|---|---|
Te | 70.80 | 70 |
Zn | 12.80 | 13 |
La | 11.00 | 11 |
Dy | 2.64 | 3 |
Yb | 2.76 | 3 |
Glass | Ωt/(×10-20, cm2) | Ω4/Ω6 | Ref. | ||
---|---|---|---|---|---|
Ω2 | Ω4 | Ω6 | |||
80(0.8GeS2·0.2Ga2S3)·20CdI2 | 14.26 | 1.10 | 2.73 | 0.40 | [ |
ZBLAY | 3.16 | 1.67 | 2.45 | 0.68 | [ |
LiYF4 crystal | 2.01 | 1.34 | 2.39 | 0.56 | [ |
70TeO2-25ZnO-5La2O3 | 3.54 | 0.76 | 1.10 | 0.69 | This work |
表2 不同掺Dy3+玻璃的J-O强度参数Ωt(t=2、4、6)
Table 2 J-O intensities, parameters Ωt (t=2, 4, 6) of Dy3+ in various glasses
Glass | Ωt/(×10-20, cm2) | Ω4/Ω6 | Ref. | ||
---|---|---|---|---|---|
Ω2 | Ω4 | Ω6 | |||
80(0.8GeS2·0.2Ga2S3)·20CdI2 | 14.26 | 1.10 | 2.73 | 0.40 | [ |
ZBLAY | 3.16 | 1.67 | 2.45 | 0.68 | [ |
LiYF4 crystal | 2.01 | 1.34 | 2.39 | 0.56 | [ |
70TeO2-25ZnO-5La2O3 | 3.54 | 0.76 | 1.10 | 0.69 | This work |
Transition | A/s-1 | β/% | τ/ms |
---|---|---|---|
6H13/2→6H15/2 | 51.44 | 100 | 19.44 |
6H11/2→6H13/2 | 14.77 | 12 | - |
→6H15/2 | 110.22 | 88 | 8.00 |
6H9/2→6H11/2 | 6.20 | 6 | - |
→6H13/2 | 31.31 | 30 | - |
→6H15/2 | 65.59 | 64 | 9.70 |
表3 TZL-Dy样品中Dy3+离子的辐射光谱参数
Table 3 Radiative spectral parameters of Dy3+ ions in TZL-Dy sample
Transition | A/s-1 | β/% | τ/ms |
---|---|---|---|
6H13/2→6H15/2 | 51.44 | 100 | 19.44 |
6H11/2→6H13/2 | 14.77 | 12 | - |
→6H15/2 | 110.22 | 88 | 8.00 |
6H9/2→6H11/2 | 6.20 | 6 | - |
→6H13/2 | 31.31 | 30 | - |
→6H15/2 | 65.59 | 64 | 9.70 |
图8 各样品中Yb3+: 2F5/2能级和Dy3+: 6H13/2能级的荧光衰减曲线
Fig. 8 Fluorescence decay curves of Yb3+: 2F5/2 level and Dy3+: 6H13/2 level in each sample (a, b) Yb3+: 2F5/2 in (a) TZL-Yb and (b) TZL-Dy/Yb samples; (c, d) Dy3+: 6H13/2 in (c) TZL-Dy and (d) TZL-Dy/Yb samples
Energy transfer | Phonon number (N), contribution ratio/% | CD-A/(×10-40, cm6·s-1) | RC/nm | |||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||
ET1 (Yb3+: 2F5/2→Dy3+: 6F7/2) | 99.92 | 0.08 | 0 | 0 | 0.82 | 0.700 |
ET2 (Yb3+: 2F5/2→Dy3+: 6H7/2, 6F9/2) | 11.49 | 85.50 | 3.01 | 0 | 9.36 | 1.050 |
ET3 (Yb3+: 2F5/2→Dy3+: 6H9/2, 6F11/2) | 0 | 0 | 55.61 | 44.39 | 1.35 | 0.760 |
表4 Yb3+离子和Dy3+离子之间能量传递的能量传递微观系数、临界半径、声子数和贡献比
Table 4 Energy transfer micro-coefficient, critical radius, phonon number and contribution ratio in energy transfers between Yb3+ and Dy3+ ions
Energy transfer | Phonon number (N), contribution ratio/% | CD-A/(×10-40, cm6·s-1) | RC/nm | |||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||
ET1 (Yb3+: 2F5/2→Dy3+: 6F7/2) | 99.92 | 0.08 | 0 | 0 | 0.82 | 0.700 |
ET2 (Yb3+: 2F5/2→Dy3+: 6H7/2, 6F9/2) | 11.49 | 85.50 | 3.01 | 0 | 9.36 | 1.050 |
ET3 (Yb3+: 2F5/2→Dy3+: 6H9/2, 6F11/2) | 0 | 0 | 55.61 | 44.39 | 1.35 | 0.760 |
图11 TZL-Dy/Yb样品中Yb3+: 2F5/2→2F7/2发射截面及发射边带与各个Dy3+吸收截面的光谱重叠情况
Fig. 11 Spectral overlap of Yb3+: 2F5/2→2F7/2 emission cross-section, emission sidebands, and various absorption cross-sections of Dy3+ in TZL-Dy/Yb sample (a) Dy3+: 6H15/2→6F7/2; (b) Dy3+: 6H15/2→6H7/2, 6F9/2; (c) Dy3+: 6H15/2→6H9/2, 6F11/2
[1] | ZHANG Y, XIA L Z, LI C Y, et al. Enhanced 2.7 µm mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass. Optics and Laser Technology, 2021, 138: 106913. |
[2] | WANG C Z, TIAN Y, GAO X Y, et al. Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations. Optics Express, 2017, 25(23): 29512. |
[3] | FENG S H, LIU C Z, ZHU J, et al. Realizing particle population inversion of 2.7 μm emission in heavy Er3+/Pr3+ co-doped low hydroxyl fluorotellurite glass for mid-infrared laser. Ceramics International, 2023, 49: 20372. |
[4] | 王森宇, 陈俊生, 赵鑫生, 等. 3-5 μm稀土离子掺杂中红外光纤激光器的研究进展(特邀). 红外与激光工程, 2023, 52(5): 20230215. |
[5] | TOBBEN H. Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass. Electronics Letters, 1992, 28(14): 1361. |
[6] | AYDIN Y O, FORTIN V, VALLEE R, et al. Towards power scaling of 2.8 μm fiber lasers. Optics Letters, 2018, 43(18): 4542. |
[7] | 尹朋伟, 李彦潮, 赵文凯, 等. 中红外稀土掺杂碲酸盐玻璃和光纤. 发光学报, 2022, 43(11): 1705. |
[8] | EI-MALLAWANY R A H. Tellurite glasses handbook: physical properties and data. Boca Raton: CRC press, 2001: 1-50. |
[9] | TIAN Y, XU R R, HU L L, et al. Broadband 2.84 μm luminescence properties and Judd-Ofelt analysis in Dy3+ doped ZrF4-BaF2- LaF3-AlF3-YF3 glass. Journal of Luminescence, 2012, 132: 128. |
[10] | GAO X Q, FANG G Y, WANG Y, et al. Visible and mid-infrared spectral performances of Dy3+: CaF2 and Dy3+/Y3+: CaF2 crystals. Journal of Alloys and Compounds, 2021, 856: 158083. |
[11] | 万瑞, 杨利青, 霍伟荣, 等. 中红外碲酸盐玻璃及光纤研究进展. 硅酸盐通报, 2022, 41(8): 2589. |
[12] | ALVES R T. Raman and optical spectroscopy studies in Tm3+/Dy3+-codoped zinc tellurite glasses. Journal of Luminescence, 2021, 230: 117738. |
[13] | NEDELCHEVA A B, IORDANOVA R, GANEV S, et al. Glass formation and structural studies of glasses in the TeO2-ZnO- Bi2O3-Nb2O5 system. Journal of Non-Crystalline Solids, 2019, 503: 224. |
[14] | FARES H, JLASSI I, ELHOUICHET H, et al. Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. Journal of Non-Crystalline Solids, 2014, 396: 1. |
[15] | KOROLEVA O N, SHTENBERG M V, IVANOVA T N. The structure of potassium germanate glasses as revealed by Raman and IR spectroscopy. Journal of Non-Crystalline Solids, 2019, 510: 143. |
[16] | 周凌峰. 掺稀土氟化物玻璃组分设计及3 μm中红外光谱特性的研究. 杭州: 中国计量大学硕士学位论文, 2020. |
[17] | CAI M Z, ZHOU B, TIAN Y, et al. Broadband mid-infrared 2.8 μm emission in Ho3+/Yb3+-codoped germanate glasses. Journal of Luminescence, 2016, 171: 143. |
[18] | QI F W, ZHOU L F, TIAN Y, et al. Low-hydroxy Dy3+/Nd3+ co-doped fluoride glass for broadband 2.9 µm luminescence properties. Journal of Luminescence, 2017, 190: 392. |
[19] | JUDD B R. Optical absorption intensities of rare-earth ions. Physical Review, 1962, 127(3): 750. |
[20] | BRIK M G, ISHII T, TKACHUK A M, et al. Calculations of the transitions intensities in the optical spectra of Dy3+: LiYF4. Journal of Alloys and Compounds, 2004, 374: 63. |
[21] | GUO H T, LIU L, WANG Y Q, et al. Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses. Optics Express, 2009, 17(17): 15350. |
[22] | SONG C L, ZHOU D C, XU P F, et al. Enhanced 3 μm luminescence in Ho3+/Yb3+ co-doped bismuth-tellurite glass by controlled structure network topology. Journal of Non-Crystalline Solids, 2022, 597: 121919. |
[23] | QI F W, HUANG F F, WANG T, et al. Enhanced 3 μm luminescence properties based on effective energy transfer Yb3+: 2F5/2→Dy3+: 6H5/2 in fluoaluminate glass modified by TeO2. Applied Optics, 2017, 56(31): H24. |
[24] | SHEN L L, WANG N, DOU A J, et al. Broadband -3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses. Optical Materials, 2018, 75: 274. |
[25] | ZHANG P X, XU M, ZHANG L H, et al. Intense 2.89 μm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping. Optics Express, 2015, 23(21): 27786. |
[26] | 戴世勋, 杨建虎, 戴能利, 等. 荧光捕获效应对Yb3+磷酸盐玻璃光谱性质的影响. 物理学报, 2003, 52(6): 1533. |
[27] | CAI X Y, WANG Y, LI J F, et al. Enhanced broadband 3 μm emission in Yb3+/Dy3+: YAlO3 crystal under 979 nm excitation. Vacuum, 2020, 181: 109647. |
[28] | PAYNE S A, CHASE L L, SMITH L K, et al. Infrared cross- section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE Journal of Quantum Electronics, 1992, 28(11): 2619. |
[29] | MCCUMBER D E. Theory of phonon-terminated optical masers. Physical Review, 1964, 134(2A): A299. |
[30] | HANG L Y, ZHANG J J, YU C L, et al. A method for emission cross section determination of Tm3+ at 2.0 μm emission. Journal of Applied Physics, 2010, 108: 103117. |
[31] | BOUDEIF Y M, YOUSEF E S, MARZOUK S Y, et al. Investigation of luminescence parameters of novel glasses with composition TeO2-ZnO-NaF-MoO2-Er2O3 as laser material. Journal of Non-Crystalline Solids, 2018, 498: 72. |
[32] | MIYAKAWA T, DEXTER D L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Physical Review B, 1970, 1(7): 2961. |
[33] | DEXTER D L. A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 1953, 21(5): 836. |
[1] | 钱新宇, 王无敌, 宋青松, 董永军, 薛艳艳, 张晨波, 王庆国, 徐晓东, 唐慧丽, 曹桂新, 徐军. 0.6%Pr, x%La:CaF2的发光性能研究和Judd-Ofelt分析[J]. 无机材料学报, 2023, 38(3): 357-362. |
[2] | 于春凤,张翔清,韩文燕,张金苏,李香萍,徐赛,陈宝玖. Lu2O3:Er3+荧光粉的Judd-Ofelt参数计算[J]. 无机材料学报, 2019, 34(2): 213-218. |
[3] | 李桂芳, 杨 倩, 卫云鸽. 复合钙钛矿型NaLaMgWO6: Eu3+红色荧光材料的制备及发光性能研[J]. 无机材料学报, 2017, 32(9): 936-942. |
[4] | 郭 威, 张 斌, 翟诚诚, 祁思胜, 余 懿, 杨安平, 李 雷, 杨志勇,王荣平, 唐定远, 陶光明, Luther-Davies B. 小芯径硫系玻璃光纤的制备及其非线性光学应用[J]. 无机材料学报, 2016, 31(2): 180-184. |
[5] | 於杏燕, 陈红兵, 王苏静, 周燕飞, 武安华, 戴世勋. Er3+;LiYF4单晶生长与光谱特性[J]. 无机材料学报, 2011, 26(9): 923-928. |
[6] | 孙 杰, 聂秋华, 戴世勋, 吴礼刚, 宋宝安, 陈飞飞, 王国祥, 徐铁峰. OH-对Er3+掺杂Ge-Ga-S-CsI玻璃中红外荧光特性的影响[J]. 无机材料学报, 2011, 26(8): 836-840. |
[7] | 朱 军1, 戴世勋1,2, 彭 波2, 徐铁峰1, 王训四1, 章向华1,3. Ho3+掺杂Ge-Ga-S-CsI玻璃中红外发光性能研究[J]. 无机材料学报, 2010, 25(5): 546-550. |
[8] | 李江,杨志勇,吴玉松,刘文斌,潘裕柏,黄莉萍,郭景坤. Nd3+离子掺杂YAG激光透明陶瓷的光谱性质及Judd-Ofelt理论分析[J]. 无机材料学报, 2008, 23(3): 429-433. |
[9] | 陈炳炎,刘粤惠,陈东丹,姜中宏. 掺铒碲酸盐玻璃的热力学稳定性和光谱性质的研究[J]. 无机材料学报, 2005, 20(3): 550-556. |
[10] | 朱基千,贺芸芬,李志国. 20GaF3-15InF3-20CdF2-15ZnF2-18PbF2-10SnF2-2TmF3玻璃光谱性质研究[J]. 无机材料学报, 2005, 20(2): 274-278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||