无机材料学报 ›› 2025, Vol. 40 ›› Issue (3): 305-313.DOI: 10.15541/jim20240374

• 研究论文 • 上一篇    下一篇

室温铁磁性还原氧化石墨烯基全碳膜

王悦1(), 王欣1(), 于显利2()   

  1. 1.吉林大学 材料科学与工程学院, 教育部汽车材料重点实验室, 长春 130012
    2.吉林大学 地球探测科学与技术学院, 长春 130026
  • 收稿日期:2024-08-12 修回日期:2024-09-29 出版日期:2025-03-20 网络出版日期:2025-03-12
  • 通讯作者: 王 欣, 教授. E-mail: Wang_xin@jlu.edu.cn;
    于显利, 教授. E-mail:yuxianli@jlu.edu.cn
  • 作者简介:王 悦(1999-), 女, 硕士研究生. E-mail: 2522784447@qq.com
  • 基金资助:
    吉林省自然科学基金(20210101381JC);吉林省发改委(2021C043-5);国家重点研发计划(2017YFC0602000)

Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide

WANG Yue1(), WANG Xin1(), YU Xianli2()   

  1. 1. Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
    2. School of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2024-08-12 Revised:2024-09-29 Published:2025-03-20 Online:2025-03-12
  • Contact: WANG Xin, professor. E-mail: Wang_xin@jlu.edu.cn;
    YU Xianli, professor. E-mail: yuxianli@jlu.edu.cn
  • About author:WANG Yue (1999-), female, Master candidate. E-mail: 2522784447@qq.com
  • Supported by:
    Natural Science Foundation of Jilin Province(20210101381JC);Development and Reform Commission of Jilin Province(2021C043-5);National Key R&D Program of China(2017YFC0602000)

摘要:

拥有铁磁性质的纳米碳材料在自旋电子学、生物医学成像、电极和染料吸附等领域具有重大的应用价值。石墨烯衍生物氧化石墨烯(Graphene Oxide, GO)和还原氧化石墨烯(Reduced Graphene Oxide, rGO)拥有卓越的物理化学性质, 呈现出室温铁磁有序结构。为了实现规模化、低成本、性能稳定的全碳膜, 采用热还原结合双维度碳复合策略, 制备了不同含量微米尺度还原氧化石墨烯纤维(rGOFs)的rGO-rGOFs全碳复合膜, 并对全碳膜的铁磁性机理及磁阻效应进行了阐述。研究发现: 引入适量rGOFs可将rGO膜的室温饱和磁化强度从0.0083 A·m2·kg-1提升至0.0960 A·m2·kg-1, 铁磁性增强是碳膜的空位缺陷和sp3(C-C)态共同作用导致的。通过电感耦合等离子体质谱仪排除了样品中金属杂质可能对饱和磁化强度的干扰。此外, 在室温、±1 T磁场下, 磁阻(Magnetoresistance, MR)曲线显示样品MR为负值。通过调控材料的表面拓扑形貌和sp3(C-C)/sp2(C=C)比值, 在一定程度上提高了材料的室温饱和磁化强度。这种新型全碳薄膜有望在未来应用于自旋电子器件和生物医学领域。

关键词: 全碳复合膜, 还原氧化石墨烯纤维, 室温铁磁性, 磁阻效应

Abstract:

Nano carbon materials with ferromagnetism have significant application value in fields such as spintronics, biomedical imaging, electrodes, and dye adsorption. Graphene derivatives graphene oxide (GO) and reduced graphene oxide (rGO) exhibit excellent physical and chemical properties, presenting a room temperature ferromagnetic ordered structure. In order to achieve large-scale, low-cost, and stable performance of all-carbon films, a dual dimensional carbon composite strategy combining thermal reduction was adopted to prepare composite films of micro reduced graphene oxide fibers (rGOFs) and nano scale rGO sheets, and the ferromagnetic mechanism of all-carbon films was explained partially. This work prepared rGO-rGOFs all-carbon composite films with different masses of rGOFs, focusing on the ferromagnetic mechanism and magnetoresistance effect of the materials. The research results find that introducing a certain amount of rGOFs can increase the room temperature saturation magnetization of rGO films from 0.0083 to 0.0960 A·m2·kg-1. Enhancement of the ferromagnetism is achieved through combined effect of vacancy type defects and sp3(C-C) states in carbon film. Interference of metal impurities in the sample, which may affect the saturation magnetization, is eliminated by inductively coupled plasma mass spectrometry. In addition, at room temperature and ±1 T magnetic field, the magnetoresistance (MR) curve shows MR value of sample is negative. By regulating the surface topology and sp3(C-C)/sp2(C=C) ratio of the material, the room temperature saturation magnetization has been improved to a higher extent. In short, this new type of all-carbon thin film is expected to be applied to spintronic devices and biomedical fields in the near future.

Key words: all-carbon composite film, reduced graphene oxide fiber, room-temperature ferromagnetism, magnetoresistance effect

中图分类号: