无机材料学报 ›› 2024, Vol. 39 ›› Issue (9): 1044-1052.DOI: 10.15541/jim20240154 CSTR: 32189.14.10.15541/jim20240154
所属专题: 【生物材料】肿瘤治疗(202409)
李世奇1,2(), 鲍群群3(
), 胡萍1,2(
), 施剑林1,2(
)
收稿日期:
2024-03-28
修回日期:
2024-05-24
出版日期:
2024-09-20
网络出版日期:
2024-05-16
通讯作者:
鲍群群, 助理研究员. E-mail: bqqshnu@163.com;作者简介:
李世奇(1999-), 男, 硕士研究生. E-mail: lishiqiucas@163.com
基金资助:
LI Shiqi1,2(), BAO Qunqun3(
), HU Ping1,2(
), SHI Jianlin1,2(
)
Received:
2024-03-28
Revised:
2024-05-24
Published:
2024-09-20
Online:
2024-05-16
Contact:
BAO Qunqun, assistant professor. E-mail: bqqshnu@163.com;About author:
LI Shiqi (1999-), male, Master candidate. E-mail: lishiqiucas@163.com
Supported by:
摘要:
癌细胞的全身性转移是目前癌症晚期患者的主要死亡原因。由于肿瘤细胞的快速增殖和细胞外基质的异常沉积, 晚期癌症大体积瘤体组织致密且刚度较高, 这为晚期实体肿瘤的治疗带来了极大的困难。一方面, 由于大体积肿瘤的结构特性, 使得常规药物难以渗透至其内部, 免疫细胞难以浸润; 另一方面, 硬基质上的肿瘤细胞具有更强的侵袭能力, 这容易引起肿瘤的全身性转移。为了解决这一问题, 本研究制备了乙二胺四乙酸(EDTA)插层锌铝双金属氢氧化物纳米材料(EDTA/LDH), 基于两个平行的Ca2+剥夺机制, 开展了EDTA/LDH材料体系对晚期大体积实体瘤的抗转移免疫治疗研究。该材料在肿瘤微酸环境中, 通过静电力作用贴附在肿瘤细胞膜上, 并释放EDTA以螯合细胞连接蛋白中的Ca2+, 切断部分细胞连接, 从而降低大体积瘤体的致密程度, 促进免疫细胞向瘤体内浸润。此外, 该材料在机体内被巨噬细胞作为“异物”吞噬, 引起钙库操纵性钙内流, 激活巨噬细胞抗肿瘤免疫效应, 抑制多形核髓系抑制性细胞(PMN-MDSCs)和调节性T细胞(Tregs)的促肿瘤侵袭作用。本研究将为晚期恶性实体瘤的抗转移治疗提供借鉴性思路和方法。
中图分类号:
李世奇, 鲍群群, 胡萍, 施剑林. 基于乙二胺四乙酸插层锌铝双金属氢氧化物的晚期肿瘤抗转移免疫治疗研究[J]. 无机材料学报, 2024, 39(9): 1044-1052.
LI Shiqi, BAO Qunqun, HU Ping, SHI Jianlin. Anti-metastatic Immunotherapy of Advanced Tumors Based on EDTA Intercalated Zinc-aluminum Layered Double Hydroxide[J]. Journal of Inorganic Materials, 2024, 39(9): 1044-1052.
图1 EDTA/LDH材料体系针对大体积恶性化实体瘤的抗转移免疫治疗示意图
Fig. 1 Schematic diagram of EDTA/LDH material system for anti-metastatic immunotherapy of large-volume malignant solid tumors
图2 EDTA/LDH材料体系的表征
Fig. 2 Characterization of EDTA/LDH material system (a) TEM image; (b) Element mappings; (c) EDS pattern; (d) FT-IR spectra; (e) XRD patterns; (f) DLS/Zeta potential
图3 EDTA/LDH 对大体积恶性实体瘤的疗效评估
Fig. 3 Evaluation of the efficacy of EDTA/LDH in large-volume malignant solid tumors (a) Schematic diagram of mouse 4T1 tumor model construction and treatment process; (b) Survival curves; (c) Tumor volume on day 0 and day 16; (d) Body weight curves; (e) Images and quantification of tumor mechanical forces measured by SWE; (f) Tumor areas; (g) Tumor mean stiffnesses Statistical significances (*p < 0.05, **p < 0.01 and ***p < 0.001) were calculated by one-way ANOVA
图4 EDTA/LDH抑制恶性肿瘤转移的效果评估(n=5)
Fig. 4 Evaluation of the efficacy of EDTA/LDH in inhibiting the metastasis of malignant tumors (n=5) (a) Photos of tumors and organs of mice in the control group and the treatment group; (b) H&E slices of tumors and organs of mice in the control group and the treatment group
图5 EDTA/LDH抗恶性肿瘤转移的免疫机制
Fig. 5 Immune mechanism of EDTA/LDH against malignant tumor metastasis (a) Tumor H&E sections and E-cadherin immunohistochemical analysis; (b) Immunofluorescence analysis, CD8+ T (CD8+), Treg (Foxp3+), PMN-MDSC (CD11b+ Ly6G+), M1 macrophages (F4/80+ CD86+) and NK (CD16+) being labeled
[1] |
VIGANÓ A, BRUERA E, JHANGRI G S, et al. Clinical survival predictors in patients with advanced cancer. Archives of Internal Medicine, 2000, 160(6): 861.
PMID |
[2] |
KODACK D P, ASKOXYLAKIS V, FERRARO G B, et al. Emerging strategies for treating brain metastases from breast cancer. Cancer Cell, 2015, 27(2): 163.
DOI PMID |
[3] | MUNOZ A, ELDRIDGE W J, JAKOBSEN N M, et al. Cellular shear stiffness reflects progression of arsenic-induced transformation during G1. Carcinogenesis, 2019, 40(10): 1298. |
[4] |
PENG Y, CHEN Z, CHEN Y, et al. ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomaterialia, 2019, 88: 86.
DOI PMID |
[5] |
WANG W, LOLLIS E M, BORDELEAU F, et al. Matrix stiffness regulates vascular integrity through focal adhesion kinase activity. Faseb Journal, 2019, 33(1): 1199.
DOI PMID |
[6] |
YAMADA K M, SIXT M. Mechanisms of 3D cell migration. Nature Reviews Molecular Cell Biology, 2019, 20(12): 738.
DOI PMID |
[7] |
JOYCE M H, LU C, JAMES E R, et al. Phenotypic basis for matrix stiffness-dependent chemoresistance of breast cancer cells to doxorubicin. Front Oncol, 2018, 8: 337.
DOI PMID |
[8] |
TODOROVSKI V, FOX A H, CHOI Y S. Matrix stiffness-sensitive long noncoding RNA NEAT1 seeded paraspeckles in cancer cells. Molecular Biology of the Cell, 2020, 31(16): 1654.
DOI PMID |
[9] |
DENG B, ZHAO Z, KONG W, et al. Biological role of matrix stiffness in tumor growth and treatment. Journal of Translational Medicine, 2022, 20(1): 540.
DOI PMID |
[10] | FENG J, TANG Y, XU Y, et al. Substrate stiffness influences the outcome of antitumor drug screening in vitro. Clinical Hemorheology and Microcirculation, 2013, 55(1): 121. |
[11] |
LADOUX B, MEGE R M. Mechanobiology of collective cell behaviours. Nature Reviews Molecular Cell Biology, 2017, 18(12): 743.
DOI PMID |
[12] |
NOLTE M, MARGADANT C. Controlling immunity and inflammation through integrin-dependent regulation of TGF-β. Trends in Cell Biology, 2020, 30(1): 49.
DOI PMID |
[13] |
KUCZEK D E, LARSEN A M H, THORSETH M L, et al. Collagen density regulates the activity of tumor-infiltrating T cells. Journal for Immunotherapy of Cancer, 2019, 7(1): 68.
DOI PMID |
[14] |
CONDAMINE T, RAMACHANDRAN I, YOUN JI, et al. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annual Review of Medicine. 2015, 66: 97.
DOI PMID |
[15] | SCENEAY J, CHOW M T, CHEN A, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Research, 2012, 72(16): 3906. |
[16] | HALVORSEN E C, MAHMOUD S M, BENNEWITH K L. Emerging roles of regulatory T cells in tumour progression and metastasis. Cancer and Metastasis Reviews, 2014, 33(4): 1025. |
[17] | TAN W, ZHANG W, STRASNER A, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature, 2011, 470(7335): 548. |
[18] | BAO Q, FU H, GUO Y, et al. Calcium-deprivation-activated immune responses for solid tumor regression. Chem, 2024, 10(4): 1175. |
[19] | BAO Q, HU P, REN W, et al. Tumor cell dissociation removes malignant bladder tumors. Chem, 2020, 6(9): 22839. |
[20] | GARCIA M A, NELSON W J, CHAVEZ N. Cell-cell junctions organize structural and signaling networks. Cold Spring Harbor Perspectives in Biology, 2018, 10(4): a029181. |
[21] | WHITE C, FRESQUEZ A. Store-Operated calcium entry regulates macrophage chemotaxis. Faseb Journal, 2020, 34(S1): 1. |
[22] | CHEN Y F, LIN P C, YEH Y M, et al. Store-operated Ca2+ entry in tumor progression: from molecular mechanisms to clinical implications. Cancers, 2019, 11(7): 1332. |
[23] | GASPAR D, VEIGA A S, CASTANHO M A. From antimicrobial to anticancer peptides. a review. Frontiers in Microbiology, 2013, 4: 63880. |
[24] | TAN J, TAY J, HEDRICK J, et al. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials, 2020, 252: 120078. |
[25] | KITAKAZE M, FUJINO S, MIYOSHI N, et al. Tumor-infiltrating T cells as a risk factor for lymph node metastasis in patients with submucosal colorectal cancer. Scientific Reports, 2023, 13: 2077. |
[26] | DENG X W, TERUNUMA H. Harnessing NK cells to control metastasis. Vaccines, 2022, 10(12): 2018. |
[27] | OBENAUF A C, MASSAGUÉ J. Surviving at a distance: organ-specific metastasis. Trends in Cancer, 2015, 1(1): 761. |
[28] |
GAO Y, ROSEN J M, ZHAN X H F. The tumor-immune ecosystem in shaping metastasis. American Journal of Physiology-Cell Physiology, 2023, 324(3): C707.
DOI PMID |
[1] | 杜佳恒, 范鑫丽, 肖东琴, 尹一然, 李忠, 贺葵, 段可. 电泳沉积制备微弧氧化钛表面氧化镁涂层及其生物学性能[J]. 无机材料学报, 2023, 38(12): 1441-1448. |
[2] | 倪晓诗, 林子扬, 秦沐严, 叶松, 王德平. 硅烷化介孔硼硅酸盐生物玻璃微球对PMMA骨水泥生物活性和力学性能的影响[J]. 无机材料学报, 2023, 38(8): 971-977. |
[3] | 上官丽, 聂晓双, 叶奎材, 崔苑苑, 乔玉琴. 氧化钛涂层润湿性对免疫成骨性能的影响规律[J]. 无机材料学报, 2023, 38(12): 1457-1565. |
[4] | 吴未, BAKHET Shahd, ASANTE Naomi Addai, KAREEM Shefiu, KOMBO Omar Ramadhan, 李宾斌, 戴红莲. 双相磷酸镁钙微球体外成血管和促成骨研究[J]. 无机材料学报, 2023, 38(7): 830-838. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 陈铖, 丁晶鑫, 王会, 王德平. 掺钕介孔硼硅酸盐生物活性玻璃陶瓷骨水泥的制备与性能表征[J]. 无机材料学报, 2022, 37(11): 1245-1258. |
[7] | 包峰, 常江. 硅酸钙纳米线复合电纺丝支架的制备及离子释放研究[J]. 无机材料学报, 2021, 36(11): 1199-1207. |
[8] | 宋可可, 黄浩, 鲁梦婕, 杨安春, 翁杰, 段可. 水热制备锌、硅、镁、铁等元素掺杂羟基磷灰石及其表征[J]. 无机材料学报, 2021, 36(10): 1091-1096. |
[9] | 高龙, 张赵文斌, 常江. 生物玻璃/聚乳酸多孔微球的制备及其作为细胞载体的研究[J]. 无机材料学报, 2020, 35(10): 1163-1168. |
[10] | 唐帅,张文泰,钱军余,鲜鹏,莫小山,黄楠,万国江. 锌在林格氏液中的体外长期腐蚀降解行为[J]. 无机材料学报, 2020, 35(4): 461-468. |
[11] | 付亚康,翁杰,刘耀文,张科宏. 钛网表面含hBMP-2的复合涂层制备及hBMP-2的释放研究[J]. 无机材料学报, 2020, 35(2): 173-178. |
[12] | 李昆强,乔玉琴,刘宣勇. 钛表面铜离子注入对细菌和细胞行为的影响[J]. 无机材料学报, 2020, 35(2): 158-164. |
[13] | 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料应用于酸蚀牛牙釉质体外再矿化[J]. 无机材料学报, 2019, 34(11): 1222-1230. |
[14] | 吴金结, 李艳, 魏仁初, 汪建新, 屈树新, 翁杰, 智伟. 微振动应力环境影响羟基磷灰石陶瓷生物活性及力学稳定性的体外评价[J]. 无机材料学报, 2019, 34(4): 417-424. |
[15] | 程丹, 黄斌, 陈涛, 景凤娟, 谢东, 冷永祥, 黄楠. TiCuO薄膜的显微结构对Cu离子释放和内皮细胞行为的影响[J]. 无机材料学报, 2018, 33(10): 1089-1096. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||