无机材料学报 ›› 2024, Vol. 39 ›› Issue (10): 1091-1099.DOI: 10.15541/jim20240161 CSTR: 32189.14.10.15541/jim20240161
江强1,2(), 施立志1, 陈政燃1, 周志勇1, 梁瑞虹1(
)
收稿日期:
2024-04-02
修回日期:
2024-05-05
出版日期:
2024-10-20
网络出版日期:
2024-05-16
通讯作者:
梁瑞虹, 研究员. E-mail: liangruihong@mail.sic.ac.cn作者简介:
江 强(1997-), 男, 硕士研究生. E-mail: jiangqiang2009@126.com
基金资助:
JIANG Qiang1,2(), SHI Lizhi1, CHEN Zhengran1, ZHOU Zhiyong1, LIANG Ruihong1(
)
Received:
2024-04-02
Revised:
2024-05-05
Published:
2024-10-20
Online:
2024-05-16
Contact:
LIANG Ruihong, professor. E-mail: liangruihong@mail.sic.ac.cnAbout author:
JIANG Qiang (1997-), male, Master candidate. E-mail: jiangqiang2009@126.com
Supported by:
摘要:
压电叠层驱动器具有低驱动电压、大位移的特点, 被广泛应用于诸多领域。作为目前压电叠层驱动器中最常使用的材料, 软性锆钛酸铅(PZT)陶瓷较大的介电常数和损耗往往会导致较高的功耗和发热量, 进而影响驱动器的疲劳特性和稳定性。为了制备出低发热量、适用于压电叠层驱动器的压电陶瓷, 本工作选取Mn掺杂(摩尔分数)的Pb(Sb1/2Nb1/2)0.02Zr0.51Ti0.47O3-0.6%MnCO3(PSN-PZT)硬性压电陶瓷作为基体材料, 通过掺入一定含量的Li2CO3烧结助剂来降低陶瓷的烧结温度, 并采用高于居里温度极化工艺进一步提升陶瓷的电学性能。最后采用该材料, 利用流延工艺制备出压电叠层驱动器, 并与相同工艺制备的Pb(Mg1/3Nb2/3)0.25(Ti0.48Zr0.52)0.75O3(PMN-PZT)驱动器进行比较。 结果显示,Li2CO3通过引入液相烧结的方式将PSN-PZT陶瓷烧结温度降低至1050 ℃。当Li2CO3含量为0.1%(质量分数)时, 高于居里温度极化的PSN-PZT陶瓷电学性能最优, 其压电系数(d33)和2 kV/mm电场下的单极应变分别为388 pC/N和0.13%。在200 Hz下, PSN-PZT驱动器温升比PMN-PZT驱动器低大约20 ℃, 且经过5×106次循环后应变仅降低6%。这表明Li2CO3低温烧结的PSN-PZT陶瓷不仅具备不错的压电性能, 而且在发热和疲劳特性方面有较大优势, 在大功率、高频等苛刻工况中有潜在的应用前景。
中图分类号:
江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099.
JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators[J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099.
图3 不同Li2CO3含量的PSN-PZT陶瓷样品表面形貌及晶粒尺寸分布图
Fig. 3 Surface morphologies and distributions of grain sizes of PSN-PZT samples with different Li2CO3 additions (a) 0.05%; (b) 0.1%; (c) 0.2%; (d) 0.3%; (e) 0.5%. M: Mean particle diameter
图4 PSN-PZT陶瓷样品的性能随烧结温度和Li2CO3含量的变化曲线
Fig. 4 Change of properties of PSN-PZT samples with Li2CO3 addition and sintering temperature (a) Piezoelectric coefficient d33; (b) Unipolar strain at 2 kV/mm
图6 常规极化和高于居里温度极化不同Li2CO3含量PSN-PZT陶瓷样品的性能变化图
Fig. 6 Properties of PSN-PZT samples with different Li2CO3 additions under conventional polarization and above-Curie-temperature polarization (a) Piezoelectric coefficient d33; (b) Unipolar strain
图7 常规极化和高于居里温度极化PSN-PZT陶瓷样品铁电畴结构图(a, b)和相位分布图(c)
Fig. 7 Diagrams of domain structures (a, b) of PSN-PZT samples under conventional polarization (a) and above-Curie-temperature polarization (b), and their corresponding distributions of phases (c)
Sample | Sintering temperature/℃ | d33/(pC·N-1) | kp | tanδ/% | Strain/%@2 kV/mm | Ref. |
---|---|---|---|---|---|---|
PSN-PZT-MnCO3-Li2CO3 | 1050 | 388 | 0.66 | 0.30 | 0.13 | This Work |
PZT | 1250 | 210 | 0.52 | 1.2 | - | [ |
PZT-Mn | 1230 | 180 | 0.62 | 0.80 | - | [ |
PMS-PZT | 1240 | 374 | 0.60 | 0.41 | - | [ |
PZT4 | >1200 | 289 | 0.70 | 0.4 | 0.02 | [ |
PZT-PbO-WO3 | ~1100 | - | 0.25 | 0.35 | - | [ |
PZT-ZnO | 1150 | 240 | 0.50 | 1.2 | - | [ |
PBaSrZT-LiBiO2-CuO-MnCO3 | 900 | 255 | 0.58 | 0.58 | - | [ |
表1 本研究及文献报道的压电陶瓷性能对比
Table 1 Comparison of properties between piezoelectric ceramics in this work and literatures
Sample | Sintering temperature/℃ | d33/(pC·N-1) | kp | tanδ/% | Strain/%@2 kV/mm | Ref. |
---|---|---|---|---|---|---|
PSN-PZT-MnCO3-Li2CO3 | 1050 | 388 | 0.66 | 0.30 | 0.13 | This Work |
PZT | 1250 | 210 | 0.52 | 1.2 | - | [ |
PZT-Mn | 1230 | 180 | 0.62 | 0.80 | - | [ |
PMS-PZT | 1240 | 374 | 0.60 | 0.41 | - | [ |
PZT4 | >1200 | 289 | 0.70 | 0.4 | 0.02 | [ |
PZT-PbO-WO3 | ~1100 | - | 0.25 | 0.35 | - | [ |
PZT-ZnO | 1150 | 240 | 0.50 | 1.2 | - | [ |
PBaSrZT-LiBiO2-CuO-MnCO3 | 900 | 255 | 0.58 | 0.58 | - | [ |
图8 硬性PSN-PZT压电叠层驱动器(右)和PMN-PZT压电叠层驱动器(左)照片
Fig. 8 Photographs of the hard PSN-PZT multilayer actuator (right) and the PMN-PZT multilayer actuator (left)
Sample | C/μF | tanδ/% |
---|---|---|
Hard PSN-PZT actuator | 0.32 | 0.45 |
PMN-PZT actuator | 0.71 | 2.29 |
表2 硬性PSN-PZT和PMN-PZT驱动器的介电性能
Table 2 Dielectric properties of the hard PSN-PZT and PMN-PZT actuators
Sample | C/μF | tanδ/% |
---|---|---|
Hard PSN-PZT actuator | 0.32 | 0.45 |
PMN-PZT actuator | 0.71 | 2.29 |
图10 150 V驱动电压下硬性PSN-PZT和PMN-PZT压电叠层驱动器在不同频率下的温升
Fig. 10 Temperature rise of the hard PSN-PZT actuator and PMN-PZT actuator under 150 V driving voltage and various frequencies (a) 50 Hz; (b) 100 Hz; (c) 150 Hz; (d) 200 Hz
图11 硬性PSN-PZT和PMN-PZT压电叠层驱动器在150 V驱动电压和200 Hz频率下的应变衰减
Fig. 11 Strain degradation of the hard PSN-PZT actuator and PMN-PZT actuator under 150 V driving voltage and 200 Hz driving frequency
[1] | TAKAHASHI S. Multilayer piezoelectric ceramic actuators and their applications. Japanese Journal of Applied Physics, 1985, 24: 41. |
[2] | PRITCHARD J, BOWEN C R, LOWRIE F. Multilayer actuators. British Ceramic Transactions, 2001, 100(6): 265. |
[3] | RANDALL C A, KELNBERGER A, YANG G Y, et al. High strain piezoelectric multilayer actuators—a material science and engineering challenge. Journal of Electroceramics, 2005, 14(3): 177. |
[4] | SHERRIT S, JONES C M, ALDRICH J B, et al. Multilayer Piezoelectric Stack Actuator Characterization. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, 2008: 53. |
[5] | ŌHASHI J, FUDA Y F Y, OHNO T O T. Multilayer piezoelectric ceramic actuator with interdigital internal electrodes. Japanese Journal of Applied Physics, 1993, 32: 2412. |
[6] | FURUKAWA T, ISHIDA K, FUKADA E. Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 1979, 50(7): 4904. |
[7] | BERLINCOURT D. Piezoelectric ceramics: characteristics and applications. Journal of the Acoustical Society of America, 1981, 70(6): 1586. |
[8] | HOFFMANN M J, HAMMER M, ENDRISS A, et al. Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics. Acta Materialia, 2001, 49(7): 1301. |
[9] | NGUYEN T N, THONG H C, ZHU Z X, et al. Hardening effect in lead-free piezoelectric ceramics. Journal of Materials Research, 2021, 36: 996. |
[10] | WANG S F, DOUGHERTY J P, HUEBNER W, et al. Silver-palladium thick-film conductors. Journal of the American Ceramic Society, 1994, 77(12): 3051. |
[11] | GAO L, GUO H, ZHANG S, et al. Base metal co-fired multilayer piezoelectrics. Actuators, 2016, 5(1): 8. |
[12] | CORKER D L, WHATMORE R W, RINGGAARD E, et al. Liquid-phase sintering of PZT ceramics. Journal of the European Ceramic Society, 2000, 20(12): 2039. |
[13] | LEE J S, PARK E C, LEE S H, et al. Conduction analysis of Li2O doped 0.2[Pb(Mg1/3Nb2/3)]-0.8[PbTiO3-PbZrO3] ceramics fabricated by columbite precursor method. Materials Chemistry and Physics, 2005, 90(2/3): 381. |
[14] | LEE J Y, CHOI J W, KANG M G, et al. Effect of CuO addition on sintering temperature and piezoelectric properties of 0.05Pb- (Al0.5Nb0.5)O3-0.95Pb(Zr0.52Ti0.48)O3+0.7wt.%Nb2O5+0.5wt.%MnO2 ceramics. Journal of Electroceramics, 2009, 23(2/3/4): 572. |
[15] | AHN C W, NAHM S, RYU J, et al. Effects of CuO and ZnO additives on sintering temperature and piezoelectric properties of 0.41Pb(Ni1/3Nb2/3)O3-0.36PbTiO3-0.23PbZrO3 ceramics. Japanese Journal of Applied Physics, 2004, 43: 205. |
[16] | ZENG Y, YAO F, ZHANG G, et al. Effects of Bi2O3-Li2CO3 additions on dielectric and pyroelectric properties of Mn doped Pb(Zr0.9Ti0.1)O3 thick films. Ceramics International, 2013, 39(4): 3709. |
[17] | CHEN H, PU T, FAN S, et al. Enhanced electrical properties in low-temperature sintering PNN-PMW-PZT ceramics by Yb2O3 doping. Materials Research Bulletin, 2022, 146: 111576. |
[18] | CHAO X, YANG Z, LI G, et al. Fabrication and characterization of low temperature sintering PMN-PZN-PZT step-down multilayer piezoelectric transformer. Sensors and Actuators A: Physical, 2008, 144(1): 117. |
[19] | NIELSEN E R, RINGGAARD E, KOSEC M. Liquid-phase sintering of Pb(Zr,Ti)O3 using PbO-WO3 additive. Journal of the European Ceramic Society, 2002, 22(11): 1847. |
[20] | YOO J, LEE C, JEONG Y, et al. Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics with the amount of Li2CO3 addition. Materials Chemistry and Physics, 2005, 90(2/3): 386. |
[21] | DONNELLY N J, SHROUT T R, RANDALL C A. Properties of (1-x)PZT-xSKN ceramics sintered at low temperature using Li2CO3. Journal of the American Ceramic Society, 2008, 91(7): 2182. |
[22] | PU T, CHEN H, XING J, et al. High piezoelectricity of low- temperature sintered Li2CO3-added PNN-PZT relaxor ferroelectrics. Journal of Materials Science: Materials in Electronics, 2022, 33(8): 4819. |
[23] | GERMAN R M, SURI P, PARK S J. Liquid phase sintering. Journal of Materials Science, 2009, 44: 1. |
[24] | PICHT G, KHANSUR N H, WEBBER K G, et al. Grain size effects in donor doped lead zirconate titanate ceramics. Journal of Applied Physics, 2020, 128(21): 214105. |
[25] | RANDALL C A, WANG S F, LAUBSCHER D, et al. Structure property relationships in core-shell BaTiO3-LiF ceramics. Journal of Materials Research, 1993, 8(4): 871. |
[26] | ZHANG Q, YUE Y, NIE R, et al. Achieving both high d33 and high TC in low-temperature sintering Pb(Ni1/3Nb2/3)O3-Pb(Mg1/2W1/2)O3-Pb- (Zr0.5Ti0.5)O3 ceramics using Li2CO3. Materials Research Bulletin, 2017, 85: 96. |
[27] | DU G, LIANG R H, LI T, et al. Recent progress on defect dipoles characteristics in piezoelectric materials. Journal of Inorganic Materials, 2013, 28(2): 123. |
[28] | LI B, BLENDELL J E, BOWMAN K J. Temperature-dependent poling behavior of lead-free BZT-BCT piezoelectrics. Journal of the American Ceramic Society, 2011, 94(10): 3192. |
[29] | DONG D, MURAKAMI K, KANEKO S, et al. Piezoelectric properties of PZT ceramics sintered at low temperature with complex-oxide additives. Journal of the Ceramic Society of Japan, 1993, 101(1178): 1090. |
[30] | EYRAUD L, GUIFFARD B, LEBRUN L, et al. Interpretation of the softening effect in PZT ceramics near the morphotropic phase boundary. Ferroelectrics, 2006, 330(1): 51. |
[31] | ZHU Z G, LI B S, LI G R, et al. Microstructure and piezoelectric properties of PMS-PZT ceramics. Materials Science and Engineering: B, 2005, 117(2): 216. |
[32] | ZHANG S, LIM J B, LEE H J, et al. Characterization of hard piezoelectric lead-free ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(8): 1523. |
[33] | LI H B, LI Y, WANG D W, et al. Effects of ZnO nanoneedles addition on the mechanical and piezoelectric properties of hard PZT-based composites. Journal of Materials Science: Materials in Electronics, 2013, 24: 1463. |
[34] | DU Z, ZHAO C, THONG H C, et al. Effect of MnCO3 on the electrical properties of PZT-based piezoceramics sintered at low temperature. Journal of Alloys and Compounds, 2019, 801: 27. |
[35] | ZHENG J, TAKAHASHI S, YOSHIKAWA S, et al. Heat generation in multilayer piezoelectric actuators. Journal of the American Ceramic Society, 1996, 79(12): 3193. |
[36] | YANG G, YUE Z X, LI L T. Research progress on the characteristics and mechanism of applied field-induced fatigue in piezoelectric ceramics. Journal of Inorganic Materials, 2007, 22(1): 1. |
[1] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[2] | 柯鑫, 谢炳卿, 王忠, 张敬国, 王建伟, 李占荣, 贺会军, 汪礼敏. 第三代半导体互连材料与低温烧结纳米铜材的研究进展[J]. 无机材料学报, 2024, 39(1): 17-31. |
[3] | 方爱华, 谢晓明, 黄富强, 江绵恒. 机械合金化合成高临界场Sm0.85Nd0.15FeAsO0.85F0.15超导体[J]. 无机材料学报, 2012, 27(4): 439-444. |
[4] | 晁小练, 杨祖培, 安伟伟. MnO2对BiFeO3掺杂PZT-PFW-PMN陶瓷的电性能与温度特性研究[J]. 无机材料学报, 2010, 25(12): 1242-1246. |
[5] | 刘忠池,周东祥,龚树萍,胡云香. 铜钼复合添加ZnO-TiO2微波介质陶瓷的低温烧结及相转变[J]. 无机材料学报, 2009, 24(4): 712-716. |
[6] | 李月明1,宋婷婷1,尤源2,胡元云2,刘维良1,唐春宝1. Ca0.3(Li1/2Sm1/2)0.7TiO3微波介质陶瓷的低温烧结研究[J]. 无机材料学报, 2008, 23(6): 1293-1297. |
[7] | 邓联文,冯则坤,黄小忠,周克省,杨兵初. Bi-Mo复合掺杂对MgCuZn铁氧体烧结特性和磁性能的影响[J]. 无机材料学报, 2008, 23(4): 669-672. |
[8] | 芦玉峰,堵永国,肖加余,张为军,吴剑锋,杨光,王跃然. ZrO2对低温烧结 BaO-Al2O3-SiO2系微晶玻璃析晶和晶型转变的影响[J]. 无机材料学报, 2008, 23(1): 159-164. |
[9] | 管恩祥,陈 玮,罗 澜. Li1.0Nb0.6Ti0.5O3陶瓷的低温烧结其微波介电性能[J]. 无机材料学报, 2007, 22(2): 315-318. |
[10] | 刘向春,赵丽丽,高峰,燕小斌,田长生. V2O5-B2O3掺杂钛酸锌陶瓷的相转变及晶粒生长动力学[J]. 无机材料学报, 2006, 21(4): 885-892. |
[11] | 杨晓庆,黄卡玛,赵岩岩. 微波作用下硫酸钙结晶过程中的“特殊效应”研究[J]. 无机材料学报, 2006, 21(2): 363-368. |
[12] | 钟明峰,苏达根,庄严,陈志雄. 低温烧结多层片式ZnO压敏电阻内电极Ag扩散对电性能的影响[J]. 无机材料学报, 2005, 20(6): 1273-1378. |
[13] | 王依琳,赵梅瑜,吴文骏,李蔚. 低温烧结(Zr0.8Sn0.2)TiO4陶瓷的晶相组成与微波介电性能[J]. 无机材料学报, 2005, 20(3): 613-617. |
[14] | 王依琳,赵梅瑜,吴文骏. 粒级组配工艺制备高磁导率Ni-Cu-Zn铁氧体[J]. 无机材料学报, 2004, 19(4): 926-930. |
[15] | 李江,潘裕柏,宁金威,黄莉萍,郭景坤. 纳米晶添加氧化铝粉体的低温烧结研究[J]. 无机材料学报, 2003, 18(6): 1192-1198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||