无机材料学报 ›› 2023, Vol. 38 ›› Issue (4): 421-428.DOI: 10.15541/jim20220709 CSTR: 32189.14.10.15541/jim20220709
所属专题: 【信息功能】忆阻器材料与器件(202506)
• 专栏:神经形态材料与器件(特邀编辑:万青) • 上一篇 下一篇
收稿日期:2022-11-28
									
				
											修回日期:2022-12-26
									
				
									
				
											出版日期:2023-04-20
									
				
											网络出版日期:2023-01-11
									
			通讯作者:
					竺立强, 教授. E-mail: zhuliqiang@nbu.edu.cn作者简介:陈鑫力(1997-), 男, 硕士研究生. E-mail: 2111077006@nbu.edu.cn
				
							基金资助:
        
               		CHEN Xinli( ), LI Yan, WANG Weisheng, SHI Zhiwen, ZHU Liqiang(
), LI Yan, WANG Weisheng, SHI Zhiwen, ZHU Liqiang( )
)
			  
			
			
			
                
        
    
Received:2022-11-28
									
				
											Revised:2022-12-26
									
				
									
				
											Published:2023-04-20
									
				
											Online:2023-01-11
									
			Contact:
					ZHU Liqiang, professor. E-mail: zhuliqiang@nbu.edu.cnAbout author:CHEN Xinli (1997-), male, Master candidate. E-mail: 2111077006@nbu.edu.cn				
							Supported by:摘要:
模仿大脑感知信息处理方式对于仿生智能感知系统的设计具有重要意义, 而采用具有生物相容性和生物可降解特性的功能材料构建环境友好型神经形态器件是突触电子学研究的重要内容。本研究采用明胶/羧化壳聚糖(GEL/C-CS)复合电解质薄膜作为栅介质制作氧化物神经形态晶体管, 模仿了不同湿度下的突触响应行为, 包括兴奋性突触后电流和双脉冲易化。基于不同刺激数量下的突触塑性行为, 提出了一种触觉对物体识别程度的量化处理方式。进一步搭建人工神经网络, 实现了对MNIST手写数字的识别, 识别精度达90%以上。这种GEL/C-CS栅控神经形态器件对仿生智能感知和脑启发神经形态系统的设计具有一定的参考价值。
中图分类号:
陈鑫力, 李岩, 王伟胜, 石智文, 竺立强. 明胶/羧化壳聚糖栅控氧化物神经形态晶体管[J]. 无机材料学报, 2023, 38(4): 421-428.
CHEN Xinli, LI Yan, WANG Weisheng, SHI Zhiwen, ZHU Liqiang. Gelatin/Carboxylated Chitosan Gated Oxide Neuromorphic Transistor[J]. Journal of Inorganic Materials, 2023, 38(4): 421-428.
 
																													图1 GEL/C-CS栅控ITO神经形态晶体管的器件工艺及GEL/C-CS电解质表征
Fig. 1 Device processing for GEL/C-CS gated ITO neuromorphic transistor and characterization of GEL/C-CS composite electrolyte film (a) GEL/C-CS composite hydrogel at room temperature with inset showing molecular structures of GEL and C-CS; (b) Schematic diagram of fabricating ITO neuromorphic transistors with insets showing SEM images for cross-sectional and surface morphologies of the electrolyte film; (c) Schematic diagram of the mechanism of electric-double-layer formation; (d) Impedance spectroscopy data of the electrolyte film
 
																													图2 GEL/C-CS栅控ITO神经形态晶体管在不同湿度下的电学性能
Fig. 2 Electrical performances for GEL/C-CS gated ITO neuromorphic transistor at different relative humidities (a) Transfer curves; (b) Electric double layer capacitors (CEDL) for GEL/C-CS based electrolyte; (c) Carrier mobility (μ); (d) Subthreshold swing (SS); Colorful figures are available on website
 
																													图3 ITO 神经形态晶体管的突触响应行为
Fig. 3 Synaptic responses of ITO neuromorphic transistor (a) EPSC responses triggered by a presynaptic spike (1 V, 10 ms) at relative humidity of 40%; (b) Peak EPSC value at different humidities; (c) EPSC responses triggered by two successive presynaptic spikes (1 V, 10 ms) at humidities of 40% and 80%; (d) Δt dependent PPF indexes at humidities of 40% and 80%
 
																													图4 手指触觉对物体识别程度的仿生量化处理
Fig. 4 Bionic quantitative processing of finger tactile to object recognition (a) Cross sectional sketch of skin tissue for unfolded fingers when touching objects; (b) EPSC triggered by pre-synaptic spike train at humidities of 40% and 80% with inset showing the definition of An; (c) $\Delta {{W}_{n}}$ as a function of n; (d, e) Degrees of recognition (R) at humidities of (d) 40% and (e) 80%, respectively
 
																													图5 MNIST模式识别
Fig. 5 MNIST pattern recognition (a, b) Synaptic weights updating obtained at humidities of (a) 40% and (b) 80%, respectively; (c) Schematic diagram of the two-layer MLP simulator; (d) Recognition accuracies at humidities of 40% and 80%; Colorful figures are available on website
 
																													图S2 ITO神经形态晶体管在不同湿度下的电学性能
Fig. S2 Fig. S2 Electrical performances for GEL/C-CS gated ITO neuromorphic transistor at different relative humidities (a) Output curves; (b) On/off ratio; (c) Hysteresis
 
																													图S3 ITO神经形态晶体管的EPSC响应调节
Fig. S3 Fig. S3 Modulation of EPSC responses for ITO neuromorphic transistor (a) EPSC responses under different spike amplitude with spike duration time fixed at 10 ms; (b) EPSC responses under different spike duration time with spike amplitude fixed at 1 V
| [1] | PARK H L, LEE Y, KIM N, et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Advanced Materials, 2020,  32(15):1903558. DOI URL | 
| [2] | HASEGAWA T, OHNO T, TERABE K, et al. Learning abilities achieved by a single solid-state atomic switch. Advanced Materials, 2010,  22(16): 1831. DOI | 
| [3] | BURGT Y, MELIANAS A, KEENE S T, et al. Organic electronics for neuromorphic computing. Nature Electronics, 2018,  1(7):386. DOI | 
| [4] | HONG X T, HUANG Y L, TIAN Q L, et al. Two-dimensional perovskite-gated AlGaN/GaN high-electron-mobility-transistor for neuromorphic vision sensor. Advanced Science, 2022,  9(27):2202019. DOI URL | 
| [5] | CHANG T, JO S H, LU W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano, 2011,  5(9):7669. DOI PMID | 
| [6] | ZHOU G, WANG Z, SUN B, et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Advanced Electronic Materials, 2022,  8(7):2101127. DOI URL | 
| [7] | YANG J T, GE C, DU J Y, et al. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Advanced Materials, 2018,  30(34):1801548. DOI URL | 
| [8] | HE Y, NIE S, LIU R, et al. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Advanced Materials, 2019,  31(21):1900903. DOI URL | 
| [9] | ZHU L Q, WAN C J, GUO L Q, et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nature Communications, 2014, 5: 3158. | 
| [10] | JIN C X, LIU W R, HUANG Y L, et al. Printable ion-gel-gated In2O3 synaptic transistor array for neuro-inspired memory. Applied Physics Letter, 2022,  120 (23): 233701. DOI URL | 
| [11] | QIU W J, SUN J, LIU W R, et al. Multi-gate-driven In-Ga-Zn-O memtransistors with a Sub-60 mV/decade subthreshold swing for neuromorphic and memlogic applications. Organic Electronics, 2020, 84: 105810. | 
| [12] | ZHONG G, ZI M, REN C, et al. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Applied Physics Letters, 2020,  117(9):092903. DOI URL | 
| [13] | KWON S M, CHO S W, KIM M, et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Advanced Materials. 2019,  31(52):1906433. DOI URL | 
| [14] | JIN C X, LIU W R, XU Y C, et al. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Letter, 2022,  22(8):3372. DOI URL | 
| [15] | JANG J T, KIM D, CHOI W S, et al. One transistor-two memristor based on amorphous indium-gallium-zinc-oxide for neuromorphic synaptic devices. ACS Applied Electronic Materials, 2020, 2(9):2837. | 
| [16] | PENG Z, WU F, JIANG L, et al. HfO2-based memristor as an artificial synapse for neuromorphic computing with tri-layer HfO2/BiFeO3/HfO2 design. Advanced Functional Materials, 2021,  31(48):2107131. DOI URL | 
| [17] | REN Z Y, KONG Y H, AI L, et al. Proton gated oxide neuromorphic transistors with bionic vision enhancement and information decoding. Journal of Materials Chemistry C, 2022,  10(18):7241. DOI URL | 
| [18] | ZHU Y X, PENG B C, ZHU L, et al. IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity. Applied Physics Letters, 2022,  121(13):133502. DOI URL | 
| [19] | DENG X, WANG S Q, LIU Y X, et al. A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing. Advanced Functional Materials, 2021,  31(23):2101099. DOI URL | 
| [20] | TANIOKA A, TAZAWA T, MIYASAKA K, et al. Effects of water on the mechanical properties of gelatin films. Biopolymers: Original Research on Biomolecules, 1974, 13(4):753. | 
| [21] | SIONKOWSKA A, WISNIEWSKI M, SKOPINSKA J, et al. Molecular interactions in collagen and chitosan blends. Biomaterials, 2004,  25(5):795. DOI PMID | 
| [22] | HAIDER S, PARK S Y, LEE S H. Preparation, swelling and electro-mechano-chemical behaviors of a gelatin-chitosan blend membrane. Soft Matter, 2008,  4(3):485. DOI PMID | 
| [23] | HASELEU J, OMERBASIC D, FRENZEL H, et al. Water-induced finger wrinkles do not affect touch acuity or dexterity in handling wet objects. PLOS One, 2014,  9(1):e84949. DOI URL | 
| [24] | LI H, DING Y N, QIU H Y, et al. Flexible and compatible synaptic transistor based on electrospun In2O3 nanofibers. IEEE Transactions on Electron Devices, 2022,  69(9):5363. DOI URL | 
| [25] | QIU H Y, HAO D D, LI H, et al. Transparent and biocompatible In2O3 artificial synapses with lactose-citric acid electrolyte for neuromorphic computing. Applied Physics Letters, 2022,  121(18):183301. DOI URL | 
| [1] | 邱海洋, 苗广潭, 李辉, 栾奇, 刘国侠, 单福凯. 等离子体处理对突触晶体管长程塑性的影响[J]. 无机材料学报, 2023, 38(4): 406-412. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||