| [1] | WHEATON B R, CLARE A G. Evaluation of phase separation in glasses with the use of atomic force microscopy. Journal of Non-Crystalline Solids, 2007,  353(52/53/54): 4767. DOI    
																																					URL
 | 
																													
																						| [2] | LIAO K, MASUNO A, TAGUCHI A, et al. Revealing spatial distribution of Al-coordinated species in a phase-separated aluminosilicate glass by STEM-EELS. Journal of Physical Chemistry Letters, 2020,  11(22): 9637. DOI    
																																																	PMID
 | 
																													
																						| [3] | ZHAO J, XU X, CHEN X, et al. A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations. Journal of the European Ceramic Society. 2019,  39(15): 5018. DOI    
																																					URL
 | 
																													
																						| [4] | MAZURIN O V. Physical properties op phase separated glasses. Journal of Non-Crystalline Solids, 1987,  95(95): 71. | 
																													
																						| [5] | GUEGUEN Y, HOUIZOT P, CHEN M, et al. Structure and viscosity of phase-separated BaO-SiO2 glasses. Journal of the American Ceramic Society, 2017,  100(5): 1982. DOI    
																																					URL
 | 
																													
																						| [6] | SEAL A K, CHAKRABORTI P, ROY N R, et al. Effect of phase separation on the fracture toughness of SiO2-B2O3-M2O glass. Materials Science and Engineering: B, 2005,  28(5): 457. DOI    
																																					URL
 | 
																													
																						| [7] | ONISHCHUK V I, SKURYATINA E Y, ZHERNOVAYA N F, et al. Phase separation in borosilicate glasses synthesized in the material system soda-colemanite-quartz sand. Glass and Ceramics, 2020,  76(9/10): 323. DOI    
																																					URL
 | 
																													
																						| [8] | LIU W, GU X M, LIANG K M, et al. Controlled phase separation by an electric field in glasses. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 1999,  265(1): 25. DOI    
																																					URL
 | 
																													
																						| [9] | KREIDL N J, MAKLAD M S. Effect of water content on phase separation in soda-silica glasses. Journal of the American Ceramic Society, 1969,  52(9): 508. DOI    
																																					URL
 | 
																													
																						| [10] | STOC A, PAWEL G, ALEKSANDRA W, et al. Alternative insight into aluminium-phosphate glass network from ab initio molecular dynamics simulations. Ceramics International, 2021,  47(2): 1891. DOI    
																																					URL
 | 
																													
																						| [11] | JEZNACH O, GAJC M, KORZEB K, et al. New calcium-free Na2O-Al2O3-P2O5 bioactive glasses with potential applications in bone tissue engineering. Journal of the American Ceramic Society, 2017,  101(2): 602. DOI    
																																					URL
 | 
																													
																						| [12] | ZAYAS M E, RIVERA E, RINCON J M. The glass formation area in a ternary ZnO-CdO-SiO2 and an Al2O3 sections of the quaternary ZnO-CdO-Al2O3-SiO2 system. Journal of Non-Crystalline Solids, 1992,  151(1): 143. DOI    
																																					URL
 | 
																													
																						| [13] | BERGMANN R B, OSWALD G, ALBRECHT M, et al. Solid-phase crystallized Si films on glass substrates for thin film solar cells. Solar Energy Materials and Solar Cells, 1997,  46(2): 147. | 
																													
																						| [14] | ABOU N E A, CHRZANOWSKI W, PICKUP D M, et al. Structure and properties of strontium-doped phosphate-based glasses. Journal of the Royal Society Interface, 2009,  6(34): 435. DOI    
																																																	PMID
 | 
																													
																						| [15] | ANDREI M. E. IR fundamental spectra and structure of pyrophosphate glasses along the 2ZnO·P2O5 2Me2O·P2O5 join (Me being Na and Li). Journal of Non-Crystalline Solids, 1997,  209(3): 209. DOI    
																																					URL
 | 
																													
																						| [16] | ZHOU Y, ZENG Q. Speciation of hydrogen in silica glass by 1H MAS NMR. Journal of Non-Crystalline Solids, 2009,  355(22/23): 1212. DOI    
																																					URL
 | 
																													
																						| [17] | MENNO M C, ALEXANDRA M, MANFRED K. Infrared attenuated total reflection spectroscopy of quartz and silica micro- and nanoparticulate films. The Journal of Physical Chemistry C, 2012,  116(1): 37. DOI    
																																					URL
 | 
																													
																						| [18] | BERTRAND P A. XPS study of chemically etched GaAs and InP. Journal of Vacuum Science and Technology, 1981,  18(1): 28. DOI    
																																					URL
 | 
																													
																						| [19] | MAJJANE A, CHAHINE A, ET-TABIROU M, et al. X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Materials Chemistry & Physics, 2014,  143(2): 779. | 
																													
																						| [20] | PUZIY A M, PODDUBNAYA O I, SOCHA R P, et al. XPS and NMR studies of phosphoric acid activated carbons. Carbon, 2008,  46(15): 2113. DOI    
																																					URL
 | 
																													
																						| [21] | TSUCHIDA J, SCHNEIDER J, RINKE M T, et al. Structure of ternary aluminum metaphosphate glasses. Journal of Physical Chemistry C, 2011,  115(44): 21927. DOI    
																																					URL
 | 
																													
																						| [22] | KAPOOR S, GUO X, YOUNGMAN R E, et al. Network glasses under pressure: permanent densification in modifier-free Al2O3-B2O3-P2O5-SiO2 systems. Physical Review Applied, 2017,  7(5): 054011. DOI    
																																					URL
 | 
																													
																						| [23] | WANG, Z J, SUN, Y Q, SEETHARAMAN S, et al. Viscous flow and crystallization behaviors of P-bearing steelmaking slags with varying fluorine content. ISIJ International, 2016,  56(4): 546. DOI    
																																					URL
 | 
																													
																						| [24] | SHIBATA S, FUKUI Y, OONISHI T, et al. Intrinsic optical losses of GeO2-P2O5-Al2O3 glasses for optical fibers. Optical Fiber Technology, 1997,  3(1): 90. DOI    
																																					URL
 | 
																													
																						| [25] | MARTIN S W. Review of the structures of phosphate glasses. European Journal of Solid State and Inorganic Chemistry, 1991,  28: 163. | 
																													
																						| [26] | WANG X, MUNOZ F, HE D, et al. Effects of SiO2 on properties and structures of neodymium doped P2O5-Al2O3-Li2O-MgO-Sb2O3 glasses. Journal of Alloys and Compounds, 2017,  729(30): 1038. DOI    
																																					URL
 | 
																													
																						| [27] | AGUIAR H, SERRA J, GONZÁLEZ P, et al. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids, 2009,  355(8): 475. DOI    
																																					URL
 | 
																													
																						| [28] | LEE S W, RYOO K S, KIM J E, et al. Structure and radiative properties of aluminophosphate glasses. Journal of Materials Science, 1994,  29(17): 4577. DOI    
																																					URL
 |