无机材料学报 ›› 2023, Vol. 38 ›› Issue (2): 170-176.DOI: 10.15541/jim20220286
收稿日期:
2022-05-20
修回日期:
2022-07-07
出版日期:
2023-02-20
网络出版日期:
2022-08-04
通讯作者:
赵高凌, 教授. E-mail: glzhao@zju.edu.cn作者简介:
朱钦塨(1993-), 男, 博士研究生. E-mail: zhuqingong@zju.edu.cn
基金资助:
ZHU Qingong(), ZHAO Gaoling(), HAN Gaorong
Received:
2022-05-20
Revised:
2022-07-07
Published:
2023-02-20
Online:
2022-08-04
Contact:
ZHAO Gaoling, professor. E-mail: glzhao@zju.edu.cnAbout author:
ZHU Qingong (1993-), male, PhD candidate. E-mail: zhuqingong@zju.edu.cn
Supported by:
摘要:
近年来, 分相玻璃以其独特的结构以及优异的物理化学性质引起了广泛关注。本研究结合气动雾化加料和机械搅拌, 采用熔融冷却法制备了纳米SiO2-Na2O高硅玻璃颗粒增强的P2O5-Al2O3玻璃。通过改变复合持续时间, 研究了玻璃的结构与力学性能之间的关系。结果表明, 异相复合玻璃的杨氏模量高于P2O5-Al2O3玻璃, 并且随着复合持续时间由10 s增大到8 min, 玻璃的杨氏模量呈现先升高后降低的趋势, 在复合持续时间为6 min时, 杨氏模量达到最大值80.7 GPa。相比于P2O5-Al2O3玻璃, 杨氏模量提高了18%。引入SiO2-Na2O高硅玻璃颗粒不仅能够在基体玻璃中形成第二相, 而且会改变P2O5-Al2O3玻璃的结构。随着复合持续时间由10 s增大到6 min, 异相复合玻璃网络中磷的配位数逐渐增大, 并且玻璃网络中的非桥氧数量逐渐减少, 网络交联度逐渐增加。而复合持续时间超过8 min, 则不利于网络交联度的增加。异相复合玻璃的开发为耐损伤玻璃材料的制备提供了新的思路。
中图分类号:
朱钦塨, 赵高凌, 韩高荣. 复合持续时间对P2O5-Al2O3异相复合玻璃结构和力学性能的影响[J]. 无机材料学报, 2023, 38(2): 170-176.
ZHU Qingong, ZHAO Gaoling, HAN Gaorong. Effect of Recombination Time on the Structure and Properties of P2O5-Al2O3 Heterogeneous Composite Glass[J]. Journal of Inorganic Materials, 2023, 38(2): 170-176.
图1 不同复合持续时间的样品(a)和复合持续10 min的样品(b)的XRD图谱(插图为样品照片)
Fig. 1 XRD patterns of samples prepared with different recombination time (a) and recombination time of 10 min (b) with inset showing optical photo of the sample
图2 P2O5-Al2O3基体玻璃(a)和SiO2-Na2O高硅玻璃(b)的FT-IR光谱图
Fig. 2 FT-IR spectra of P2O5-Al2O3 matrix glass (a) and SiO2-Na2O high-silicate glass (b) Colorful figures are available on website
图3 P2O5-Al2O3基体玻璃(a)和不同复合持续时间(b~f)的异相复合玻璃的AFM-IR图像
Fig. 3 AFM-IR images of the matrix glass (a) and heterogeneous composite glass prepared with different recombination time (b-f) (b) 10 s; (c) 2 min; (d) 4 min; (e) 6 min; (f) 8 min
图4 异相复合玻璃的高分辨率P2p XPS光谱 (采用最小二乘法拟合)
Fig. 4 High-resolution P2p XPS spectra for heterogeneous composite glass fitting with the least squares method Recombination time: (a) 10 s; (b) 2 min; (c) 4 min; (d) 6 min; (e) 8 min
Recombination time | Peak position/eV | FWHM/eV | Area/% | |
---|---|---|---|---|
Main peak | Deconvoluted peak | |||
10 s | 134.46 | 134.23 | 1.46 | 66.7 |
135.17 | 1.47 | 33.3 | ||
2 min | 134.42 | 134.22 | 1.41 | 66.7 |
135.17 | 1.41 | 33.3 | ||
4 min | 134.59 | 134.35 | 1.47 | 66.7 |
135.28 | 1.44 | 33.3 | ||
6 min | 134.67 | 134.36 | 1.74 | 66.7 |
135.60 | 2.16 | 33.3 | ||
8 min | 134.44 | 134.26 | 1.45 | 66.7 |
135.18 | 1.50 | 33.3 |
表1 异相复合玻璃拟合得到的峰值位置、半峰宽(FWHM)和面积
Table 1 Peak positions, full width at half maximum (FWHM) and area from the fitting curves of P2p core levels for heterogeneous composite glass
Recombination time | Peak position/eV | FWHM/eV | Area/% | |
---|---|---|---|---|
Main peak | Deconvoluted peak | |||
10 s | 134.46 | 134.23 | 1.46 | 66.7 |
135.17 | 1.47 | 33.3 | ||
2 min | 134.42 | 134.22 | 1.41 | 66.7 |
135.17 | 1.41 | 33.3 | ||
4 min | 134.59 | 134.35 | 1.47 | 66.7 |
135.28 | 1.44 | 33.3 | ||
6 min | 134.67 | 134.36 | 1.74 | 66.7 |
135.60 | 2.16 | 33.3 | ||
8 min | 134.44 | 134.26 | 1.45 | 66.7 |
135.18 | 1.50 | 33.3 |
图5 异相复合玻璃高分辨率O1s XPS光谱 (用最小二乘法拟合)
Fig. 5 High-resolution O1s XPS spectra for heterogeneous composite glass fitting with the least squares method Recombination time: (a) 10 s; (b) 2 min; (c) 4 min; (d) 6 min; (e) 8 min
Recombina- tion time | NBO-Li/Mg | NBO-Al | BO | ||||||
---|---|---|---|---|---|---|---|---|---|
BE/eV | FWHM/eV | Area/% | BE/eV | FWHM/eV | Area/% | BE/eV | FWHM/eV | Area/% | |
10 s | 531.93 | 1.39 | 29.69 | 532.36 | 1.39 | 29.68 | 533.35 | 1.78 | 40.63 |
2 min | 532.10 | 1.43 | 37.42 | 532.78 | 2.17 | 31.30 | 533.20 | 2.17 | 31.29 |
4 min | 531.95 | 1.43 | 31.66 | 532.41 | 1.97 | 34.18 | 533.29 | 1.97 | 34.16 |
6 min | 531.97 | 1.39 | 29.65 | 532.36 | 1.99 | 35.18 | 533.29 | 1.99 | 35.17 |
8 min | 532.07 | 1.35 | 31.65 | 532.55 | 2.07 | 34.18 | 533.24 | 2.07 | 34.17 |
表2 异相复合玻璃拟合得到的峰值位置、半峰宽(FWHM)和面积比例
Table 2 Peak positions, full width at half maximum (FWHM) and area from the fitting curves of O1s core levels for heterogeneous composite glass
Recombina- tion time | NBO-Li/Mg | NBO-Al | BO | ||||||
---|---|---|---|---|---|---|---|---|---|
BE/eV | FWHM/eV | Area/% | BE/eV | FWHM/eV | Area/% | BE/eV | FWHM/eV | Area/% | |
10 s | 531.93 | 1.39 | 29.69 | 532.36 | 1.39 | 29.68 | 533.35 | 1.78 | 40.63 |
2 min | 532.10 | 1.43 | 37.42 | 532.78 | 2.17 | 31.30 | 533.20 | 2.17 | 31.29 |
4 min | 531.95 | 1.43 | 31.66 | 532.41 | 1.97 | 34.18 | 533.29 | 1.97 | 34.16 |
6 min | 531.97 | 1.39 | 29.65 | 532.36 | 1.99 | 35.18 | 533.29 | 1.99 | 35.17 |
8 min | 532.07 | 1.35 | 31.65 | 532.55 | 2.07 | 34.18 | 533.24 | 2.07 | 34.17 |
图6 不同复合持续时间P2O5-Al2O3异相复合玻璃的拉曼光谱
Fig. 6 Raman spectra of P2O5-Al2O3 heterogeneous composite glass prepared with different recombination time Colorful figure is available on website
[1] |
WHEATON B R, CLARE A G. Evaluation of phase separation in glasses with the use of atomic force microscopy. Journal of Non-Crystalline Solids, 2007, 353(52/53/54): 4767.
DOI URL |
[2] |
LIAO K, MASUNO A, TAGUCHI A, et al. Revealing spatial distribution of Al-coordinated species in a phase-separated aluminosilicate glass by STEM-EELS. Journal of Physical Chemistry Letters, 2020, 11(22): 9637.
DOI PMID |
[3] |
ZHAO J, XU X, CHEN X, et al. A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations. Journal of the European Ceramic Society. 2019, 39(15): 5018.
DOI URL |
[4] | MAZURIN O V. Physical properties op phase separated glasses. Journal of Non-Crystalline Solids, 1987, 95(95): 71. |
[5] |
GUEGUEN Y, HOUIZOT P, CHEN M, et al. Structure and viscosity of phase-separated BaO-SiO2 glasses. Journal of the American Ceramic Society, 2017, 100(5): 1982.
DOI URL |
[6] |
SEAL A K, CHAKRABORTI P, ROY N R, et al. Effect of phase separation on the fracture toughness of SiO2-B2O3-M2O glass. Materials Science and Engineering: B, 2005, 28(5): 457.
DOI URL |
[7] |
ONISHCHUK V I, SKURYATINA E Y, ZHERNOVAYA N F, et al. Phase separation in borosilicate glasses synthesized in the material system soda-colemanite-quartz sand. Glass and Ceramics, 2020, 76(9/10): 323.
DOI URL |
[8] |
LIU W, GU X M, LIANG K M, et al. Controlled phase separation by an electric field in glasses. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 1999, 265(1): 25.
DOI URL |
[9] |
KREIDL N J, MAKLAD M S. Effect of water content on phase separation in soda-silica glasses. Journal of the American Ceramic Society, 1969, 52(9): 508.
DOI URL |
[10] |
STOC A, PAWEL G, ALEKSANDRA W, et al. Alternative insight into aluminium-phosphate glass network from ab initio molecular dynamics simulations. Ceramics International, 2021, 47(2): 1891.
DOI URL |
[11] |
JEZNACH O, GAJC M, KORZEB K, et al. New calcium-free Na2O-Al2O3-P2O5 bioactive glasses with potential applications in bone tissue engineering. Journal of the American Ceramic Society, 2017, 101(2): 602.
DOI URL |
[12] |
ZAYAS M E, RIVERA E, RINCON J M. The glass formation area in a ternary ZnO-CdO-SiO2 and an Al2O3 sections of the quaternary ZnO-CdO-Al2O3-SiO2 system. Journal of Non-Crystalline Solids, 1992, 151(1): 143.
DOI URL |
[13] | BERGMANN R B, OSWALD G, ALBRECHT M, et al. Solid-phase crystallized Si films on glass substrates for thin film solar cells. Solar Energy Materials and Solar Cells, 1997, 46(2): 147. |
[14] |
ABOU N E A, CHRZANOWSKI W, PICKUP D M, et al. Structure and properties of strontium-doped phosphate-based glasses. Journal of the Royal Society Interface, 2009, 6(34): 435.
DOI PMID |
[15] |
ANDREI M. E. IR fundamental spectra and structure of pyrophosphate glasses along the 2ZnO·P2O5 2Me2O·P2O5 join (Me being Na and Li). Journal of Non-Crystalline Solids, 1997, 209(3): 209.
DOI URL |
[16] |
ZHOU Y, ZENG Q. Speciation of hydrogen in silica glass by 1H MAS NMR. Journal of Non-Crystalline Solids, 2009, 355(22/23): 1212.
DOI URL |
[17] |
MENNO M C, ALEXANDRA M, MANFRED K. Infrared attenuated total reflection spectroscopy of quartz and silica micro- and nanoparticulate films. The Journal of Physical Chemistry C, 2012, 116(1): 37.
DOI URL |
[18] |
BERTRAND P A. XPS study of chemically etched GaAs and InP. Journal of Vacuum Science and Technology, 1981, 18(1): 28.
DOI URL |
[19] | MAJJANE A, CHAHINE A, ET-TABIROU M, et al. X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Materials Chemistry & Physics, 2014, 143(2): 779. |
[20] |
PUZIY A M, PODDUBNAYA O I, SOCHA R P, et al. XPS and NMR studies of phosphoric acid activated carbons. Carbon, 2008, 46(15): 2113.
DOI URL |
[21] |
TSUCHIDA J, SCHNEIDER J, RINKE M T, et al. Structure of ternary aluminum metaphosphate glasses. Journal of Physical Chemistry C, 2011, 115(44): 21927.
DOI URL |
[22] |
KAPOOR S, GUO X, YOUNGMAN R E, et al. Network glasses under pressure: permanent densification in modifier-free Al2O3-B2O3-P2O5-SiO2 systems. Physical Review Applied, 2017, 7(5): 054011.
DOI URL |
[23] |
WANG, Z J, SUN, Y Q, SEETHARAMAN S, et al. Viscous flow and crystallization behaviors of P-bearing steelmaking slags with varying fluorine content. ISIJ International, 2016, 56(4): 546.
DOI URL |
[24] |
SHIBATA S, FUKUI Y, OONISHI T, et al. Intrinsic optical losses of GeO2-P2O5-Al2O3 glasses for optical fibers. Optical Fiber Technology, 1997, 3(1): 90.
DOI URL |
[25] | MARTIN S W. Review of the structures of phosphate glasses. European Journal of Solid State and Inorganic Chemistry, 1991, 28: 163. |
[26] |
WANG X, MUNOZ F, HE D, et al. Effects of SiO2 on properties and structures of neodymium doped P2O5-Al2O3-Li2O-MgO-Sb2O3 glasses. Journal of Alloys and Compounds, 2017, 729(30): 1038.
DOI URL |
[27] |
AGUIAR H, SERRA J, GONZÁLEZ P, et al. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids, 2009, 355(8): 475.
DOI URL |
[28] |
LEE S W, RYOO K S, KIM J E, et al. Structure and radiative properties of aluminophosphate glasses. Journal of Materials Science, 1994, 29(17): 4577.
DOI URL |
[1] | 于 瑶, 王旭升, 李艳霞, 姚 熹. 极化对锆钛酸铅陶瓷力学性能的影响[J]. 无机材料学报, 2015, 30(2): 219-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||