[1] |
WHEATON B R, CLARE A G. Evaluation of phase separation in glasses with the use of atomic force microscopy. Journal of Non-Crystalline Solids, 2007, 353(52/53/54): 4767.
DOI
URL
|
[2] |
LIAO K, MASUNO A, TAGUCHI A, et al. Revealing spatial distribution of Al-coordinated species in a phase-separated aluminosilicate glass by STEM-EELS. Journal of Physical Chemistry Letters, 2020, 11(22): 9637.
DOI
PMID
|
[3] |
ZHAO J, XU X, CHEN X, et al. A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations. Journal of the European Ceramic Society. 2019, 39(15): 5018.
DOI
URL
|
[4] |
MAZURIN O V. Physical properties op phase separated glasses. Journal of Non-Crystalline Solids, 1987, 95(95): 71.
|
[5] |
GUEGUEN Y, HOUIZOT P, CHEN M, et al. Structure and viscosity of phase-separated BaO-SiO2 glasses. Journal of the American Ceramic Society, 2017, 100(5): 1982.
DOI
URL
|
[6] |
SEAL A K, CHAKRABORTI P, ROY N R, et al. Effect of phase separation on the fracture toughness of SiO2-B2O3-M2O glass. Materials Science and Engineering: B, 2005, 28(5): 457.
DOI
URL
|
[7] |
ONISHCHUK V I, SKURYATINA E Y, ZHERNOVAYA N F, et al. Phase separation in borosilicate glasses synthesized in the material system soda-colemanite-quartz sand. Glass and Ceramics, 2020, 76(9/10): 323.
DOI
URL
|
[8] |
LIU W, GU X M, LIANG K M, et al. Controlled phase separation by an electric field in glasses. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 1999, 265(1): 25.
DOI
URL
|
[9] |
KREIDL N J, MAKLAD M S. Effect of water content on phase separation in soda-silica glasses. Journal of the American Ceramic Society, 1969, 52(9): 508.
DOI
URL
|
[10] |
STOC A, PAWEL G, ALEKSANDRA W, et al. Alternative insight into aluminium-phosphate glass network from ab initio molecular dynamics simulations. Ceramics International, 2021, 47(2): 1891.
DOI
URL
|
[11] |
JEZNACH O, GAJC M, KORZEB K, et al. New calcium-free Na2O-Al2O3-P2O5 bioactive glasses with potential applications in bone tissue engineering. Journal of the American Ceramic Society, 2017, 101(2): 602.
DOI
URL
|
[12] |
ZAYAS M E, RIVERA E, RINCON J M. The glass formation area in a ternary ZnO-CdO-SiO2 and an Al2O3 sections of the quaternary ZnO-CdO-Al2O3-SiO2 system. Journal of Non-Crystalline Solids, 1992, 151(1): 143.
DOI
URL
|
[13] |
BERGMANN R B, OSWALD G, ALBRECHT M, et al. Solid-phase crystallized Si films on glass substrates for thin film solar cells. Solar Energy Materials and Solar Cells, 1997, 46(2): 147.
|
[14] |
ABOU N E A, CHRZANOWSKI W, PICKUP D M, et al. Structure and properties of strontium-doped phosphate-based glasses. Journal of the Royal Society Interface, 2009, 6(34): 435.
DOI
PMID
|
[15] |
ANDREI M. E. IR fundamental spectra and structure of pyrophosphate glasses along the 2ZnO·P2O5 2Me2O·P2O5 join (Me being Na and Li). Journal of Non-Crystalline Solids, 1997, 209(3): 209.
DOI
URL
|
[16] |
ZHOU Y, ZENG Q. Speciation of hydrogen in silica glass by 1H MAS NMR. Journal of Non-Crystalline Solids, 2009, 355(22/23): 1212.
DOI
URL
|
[17] |
MENNO M C, ALEXANDRA M, MANFRED K. Infrared attenuated total reflection spectroscopy of quartz and silica micro- and nanoparticulate films. The Journal of Physical Chemistry C, 2012, 116(1): 37.
DOI
URL
|
[18] |
BERTRAND P A. XPS study of chemically etched GaAs and InP. Journal of Vacuum Science and Technology, 1981, 18(1): 28.
DOI
URL
|
[19] |
MAJJANE A, CHAHINE A, ET-TABIROU M, et al. X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Materials Chemistry & Physics, 2014, 143(2): 779.
|
[20] |
PUZIY A M, PODDUBNAYA O I, SOCHA R P, et al. XPS and NMR studies of phosphoric acid activated carbons. Carbon, 2008, 46(15): 2113.
DOI
URL
|
[21] |
TSUCHIDA J, SCHNEIDER J, RINKE M T, et al. Structure of ternary aluminum metaphosphate glasses. Journal of Physical Chemistry C, 2011, 115(44): 21927.
DOI
URL
|
[22] |
KAPOOR S, GUO X, YOUNGMAN R E, et al. Network glasses under pressure: permanent densification in modifier-free Al2O3-B2O3-P2O5-SiO2 systems. Physical Review Applied, 2017, 7(5): 054011.
DOI
URL
|
[23] |
WANG, Z J, SUN, Y Q, SEETHARAMAN S, et al. Viscous flow and crystallization behaviors of P-bearing steelmaking slags with varying fluorine content. ISIJ International, 2016, 56(4): 546.
DOI
URL
|
[24] |
SHIBATA S, FUKUI Y, OONISHI T, et al. Intrinsic optical losses of GeO2-P2O5-Al2O3 glasses for optical fibers. Optical Fiber Technology, 1997, 3(1): 90.
DOI
URL
|
[25] |
MARTIN S W. Review of the structures of phosphate glasses. European Journal of Solid State and Inorganic Chemistry, 1991, 28: 163.
|
[26] |
WANG X, MUNOZ F, HE D, et al. Effects of SiO2 on properties and structures of neodymium doped P2O5-Al2O3-Li2O-MgO-Sb2O3 glasses. Journal of Alloys and Compounds, 2017, 729(30): 1038.
DOI
URL
|
[27] |
AGUIAR H, SERRA J, GONZÁLEZ P, et al. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids, 2009, 355(8): 475.
DOI
URL
|
[28] |
LEE S W, RYOO K S, KIM J E, et al. Structure and radiative properties of aluminophosphate glasses. Journal of Materials Science, 1994, 29(17): 4577.
DOI
URL
|