无机材料学报 ›› 2023, Vol. 38 ›› Issue (10): 1216-1222.DOI: 10.15541/jim20230161 CSTR: 32189.14.10.15541/jim20230161

所属专题: 【能源环境】污染物去除(202312)

• 研究论文 • 上一篇    下一篇

α-Ni(OH)2表面羟基协同Ni3+位点催化氧化甲醛机理研究

张瑞阳1,2(), 王壹1,2, 欧博文2, 周莹1,2()   

  1. 1.西南石油大学 油气藏地质及开发工程全国重点实验室, 成都 610500
    2.西南石油大学 新能源与材料学院, 成都 610500
  • 收稿日期:2023-04-03 修回日期:2023-05-11 出版日期:2023-10-20 网络出版日期:2023-05-14
  • 通讯作者: 周 莹, 教授. E-mail: yzhou@swpu.edu.cn
  • 作者简介:张瑞阳(1990-), 男, 博士. E-mail: ryzhang@swpu.edu.cn
  • 基金资助:
    国家自然科学基金(22206159);四川省重大科技专项(2020ZDZX0008)

α-Ni(OH)2 Surface Hydroxyls Synergize Ni3+ Sites for Catalytic Formaldehyde Oxidation

ZHANG Ruiyang1,2(), WANG Yi1,2, OU Bowen2, ZHOU Ying1,2()   

  1. 1. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    2. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
  • Received:2023-04-03 Revised:2023-05-11 Published:2023-10-20 Online:2023-05-14
  • Contact: ZHOU Ying, professor. E-mail: yzhou@swpu.edu.cn
  • About author:ZHANG Ruiyang (1990-), male, PhD. E-mail: ryzhang@swpu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22206159);Sichuan Science and Technology Program(2020ZDZX0008)

摘要:

室内甲醛污染已成为影响人类生命健康的重要问题之一。以氧气为氧化剂的催化氧化甲醛技术以其条件温和、无毒副产物等优势而受到广泛关注, 但是开发经济高效的催化材料仍然面临巨大的挑战。本工作通过一步水热法制备了α-Ni(OH)2, 并研究了其催化氧化甲醛机理。测试结果表明, 以水为溶剂、硝酸镍为镍源制备的α-Ni(OH)2在室温下催化氧化甲醛效率最高, 达到71.2%。原位红外和理论计算分析发现, 由于α-Ni(OH)2表面丰富的羟基官能团, 吸附的甲醛与α-Ni(OH)2表面羟基之间存在强烈的相互作用, 增强了对甲醛的活化, 在无氧气条件下实现了甲醛氧化。另一方面, 不同条件处理的α-Ni(OH)2的XPS分析证实了催化氧化甲醛的活性位点为Ni3+, 且氧气可加速Ni3+活性位点的回复。α-Ni(OH)2表面羟基协同活性位点Ni3+促进了甲醛的催化氧化, 这与传统氧气解离为速控步的甲醛氧化反应路径明显不同。本研究提出了表面羟基协同活性位点促进甲醛氧化的反应机理, 为催化氧化甲醛技术的实际应用提供了理论基础。

关键词: 催化氧化甲醛, 表面羟基, 反应机理, 反应路径

Abstract:

Indoor formaldehyde (HCHO) pollution has become one of the major issues affecting human health. Catalytic formaldehyde oxidation technology employing oxygen as oxidant has received extensive attention owing to its mild conditions and nontoxic byproducts, but developing affordable and effective catalysts remains a significant hurdle. In this work, α-Ni(OH)2 was prepared through one-step hydrothermal method and its catalytic formaldehyde oxidation mechanism was investigated. The greatest catalytic formaldehyde elimination rate of 71.2% was demonstrated by α-Ni(OH)2 at room temperature, which was made with water as the solvent and nickel nitrate as the nickel source. In situ DRIFTS and theoretical calculations revealed that, due to abundant hydroxyl functional groups on the surface of α-Ni(OH)2, there was strong interaction between adsorbed formaldehyde and hydroxyl group on the surface of α-Ni(OH)2, which promoted formaldehyde activation and achieved oxidation of formaldehyde without oxygen. On the other hand, the XPS spectra of α-Ni(OH)2 treated under different conditions confirmed that the active sites of catalytic formaldehyde oxidation were Ni3+, and oxygen accelerated the recovery of Ni3+ active sites. The surface hydroxyl group of α-Ni(OH)2 cooperated with the Ni3+ active sites achieved excellent catalytic efficiency of formaldehyde oxidation, which was obviously different from the traditional formaldehyde oxidation path with oxygen dissociation as the speed control step. Our work presents a new formaldehyde oxidation pathway controlled by synergy of surface hydroxyl and active sites, and offers a theoretical foundation for the actual use of catalytic formaldehyde oxidation.

Key words: catalytic formaldehyde oxidation, surface hydroxyl, reaction mechanism, reaction path

中图分类号: