[1] |
ChANDRAIAH M R. Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium.Alex. Eng. J., 2016, 55(1): 619-625.
|
[2] |
TAO Y G, YE L B, PAN J, et al.Removal of Pb(II) from aqueous solution on chitosan/TiO2 hybrid film.J. Hazard. Mater., 2009, 161(2/3): 718-722.
|
[3] |
SELATNIA A, BOUKAZOULA A, KECHILD H N, et al.Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass.Biochem. Eng. J., 2004, 19(2): 127-135.
|
[4] |
LU Y, HELUO J G.An improved synthesis of chitosan bead for Pb(II) adsorption.Chem. Eng. J., 2013, 226(24): 271-278.
|
[5] |
KAPOOR A, VIRARAGHAVAN T, CULLIMORE D R.Removal of heavy metals using the fungus Aspergillus niger.Biores. Tech., 1999, 70(1): 95-104.
|
[6] |
CHEN R Y, ZHANG P L, LIAO S L, et al.Electrochemical removal of low concentration Pb(II) from aqueous solution based on PPy/α-ZrP/PTCF electrode.J. Electrochem., 2015, 21(4): 344-352.
|
[7] |
LUO S, LU T, PENG L, et al.Synthesis of nanoscale zero-valent iron immobilized in alginate microcapsules for removal of Pb(II) from aqueous solution. J. Mater. Chem. A, 2014, 2(37): 15463-15472.
|
[8] |
FANG Y T, DING J, FAN J, et al.Preparation and performance of novel A13+modified silica geladsorptive materials.J. Inorg. Mater., 2005, 20(4): 933-939.
|
[9] |
LI Y P, SUN C J, JIA K, et al.Soft template-directed hierarchical mordenites and their performance in benzylation of benzene with benzyl alcohol.J. Inorg. Mater., 2016, 31(12): 1355-1362.
|
[10] |
WU M J, GAO Z Y, YUAN J, et al.Hydrothermal fabrication and catalytic performance of chromium oxide for low-concentration NO oxidation at ambient temperature.J. Inorg. Mater., 2016, 31(11): 1191-1197.
|
[11] |
LIU P, WANG X, JUN M A, et al.Application of enhanced composite technologies of nano zero-valent iron in the treatment of water pollution.Chem. Ind. Eng., 2016, 35(3): 926-934.
|
[12] |
JABEEN H, KEMP K C, CHANDRA V.Synthesis of nano zerovalent iron nanoparticles--graphene composite for the treatment of lead contaminated water. J. Environ. Manage., 2013, 130(1): 429-435.
|
[13] |
LI Z J, WANG L, YUAN L Y, et al.Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite.J. Hazard. Mater., 2015, 290: 26-33.
|
[14] |
HUANG Q, LIU W, PENG P, et al.Reductive dechlorination of tetrachlorobisphenol A by Pd/Fe bimetallic catalysts.J. Hazard. Mater., 2013, 262(22): 634-641.
|
[15] |
HU C Y.Hexavalent chromium removal from near natural water by copper-iron bimetallic particles.Water Res., 2010, 44(10): 3101-3108.
|
[16] |
XU F, DENG S, XU J, et al.Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol.Environ. Sci. Technol., 2012, 46(8): 4576-4582.
|
[17] |
ZhOU X, JING G, LV B, et al. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound- assisted system.Chemosphere, 2016, 160: 332-341.
|
[18] |
FU F, CHENG Z, DIONYSION D D, et al.Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: performance and mechanism.J. Hazard. Mater., 2015, 298: 261-269.
|
[19] |
SU Y F, CHENG Y L, SHIH Y H.Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.J. Environ. Manage., 2013, 129(129C): 361-366.
|
[20] |
SUN Y, DING C, CHENG W, et al.Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron.J. Hazard. Mater., 2014, 280: 399-408.
|
[21] |
WANG H M.Effect of agitation on sorption behavior of expanded graphite for methyl orange in water and crude oil floated on water.Adv. Mater. Res., 2012, 496: 391-394.
|
[22] |
YANG L, LIU H, DENG Q, et al.Modification of expandable graphite and adsorption for methyl orange.Appl. Mech. Mater., 2014, 618: 81-85.
|
[23] |
ZHU M C, YANG T, HUANG J B, et al.Removal of methyl orange from aqueous solution onto expanded graphite by adsorption process.Adv. Mater. Res., 2011, 322: 89-92.
|
[24] |
MENG Z, JIA Z B, WEI Y.Preparation and FTIR spectra of amorphous δ-FeOOH.J. Process Eng., 2004, 4(2): 146-149.
|
[25] |
SU C, PULS R W.Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products.Environ. Sci. Technol., 1999, 33(1): 163-168.
|
[26] |
HUA L J, YUN Z J, PING Z T.Assessment of apparent activation energies for reducing iron oxides by CO and CO-H2.J. Iron Res., 2000, 34(1): 5-9.
|
[27] |
LIU J, ZHANG J, ZHOU T.Assessment of apparent activation energies for reduction reactions of iron oxides by hydrogen.J. Iron Res., 1999, 11(6): 9-13.
|
[28] |
MATHIEU H J, LANDOLT D.An investigation of thin oxide films thermally grown in situ on Fe24Cr and Fe24Cr11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy.Corros. Sci., 1986, 26(7): 547-559.
|
[29] |
HAWN D D, DEKOVEN B M.Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides.Surf. Interface Anal., 1987, 10(2/3): 63-74.
|
[30] |
TAN B J, SHERWOOD P M A, KLABUNDE K J.XPS studies of gold films prepared from nonaqueous gold colloids.Langmuir, 1990, 6(1): 105-113.
|
[31] |
MILLS P, SULLIWAN J L.A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy.J. Phys. D Appl. Phys., 1983, 16(5): 723-732.
|
[32] |
CHAUHAN P K, GADIYAR H S, KRISHNAN R.X-ray photoelectron spectroscopy for surface film analysis in corrosion research.Pramana, 1985, 24(1): 383-395.
|
[33] |
BLAKE P G, CARLEY A F, CASTRO V D, et al.Chemisorptive replacement of surface oxygen by hydrogen halides (HCl and HBr) at Pb(110) surfaces. Photoelectron spectroscopic and kinetic evidence for a metastable chloride overlayer.J. Chem. Soc., Faraday Trans., 1986, 82(3): 723-737.
|
[34] |
NEFEDOV V I, SALYN Y V, SOLOZHENKIN P M, et al.X-ray photoelectron study of surface compounds formed during flotation of minerals.Surf. Interface Anal., 1980, 2(5): 170-172.
|
[35] |
ROGERS J D, SUNDARAM V S, KLEIMAN G G, et al.High resolution study of the M45N67N67 and M45N45N67 Auger transitions in the 5d series.J. Phys. F Metal Phys., 1982, 12(9): 2097-2102.
|
[36] |
BARR T L, YIN M, VARMA S.Detailed X-ray photoelectron spectroscopy valence band and core level studies of select metals oxidations. J. Vac. Sci. Technol., 1992, 10(4): 2383-2390.
|
[37] |
TAYLOR J A, PERRY D L.An X-ray photoelectron and electron energy loss study of the oxidation of lead.J. Vac. Sci. Technol., 1984, 2(2): 771-774.
|
[38] |
ETTEMA A R H F, HAAS C. An X-ray photoemission spectroscopy study of interlayer charge transfer in some misfit layer compounds.J. Phys. Condens. Matter, 1993, 5(23): 3817-3826.
|
[39] |
LIU H, JIANG E Y, ZHENG R K, et al.Structures and transport properties of polycrystalline Fe3O4 filmsJ. Phys. Condens. Matter, 2003, 15(15): 8003-8009.
|