[1] |
Yuan H P, De Bruijn J D, Li Y, et al. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. J. Mater. Sci. Mater. Med., 2001, 12(1): 7-13.
|
[2] |
Yuan H P, Kurashina K, de Bruijn J D, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials, 1999, 20(19): 1799-1806.
|
[3] |
Li Y, Tjandra W, Tam K C. Synthesis and characterization of nanoporous hydroxyapatite using cation surfactants as templates. Mater. Res. Bull., 2008, 43(8/9): 2318-2326.
|
[4] |
Hornez J C, Chai F, Monchau F, et al. Biological and physico- chemical assessment of hydroxyapatite (HA) with different porosity. Biomolecular Engineering, 2007, 24(5): 505-509.
|
[5] |
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474-5491.
|
[6] |
Jones A C, Arns C H, Hutmacher D W, et al. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials, 2009, 30(7): 1440-1451.
|
[7] |
Dunn G A, Heath J P. A new hypothesis of contact guidance in tissue cells. Exp. Cell Res., 1976, 101(1): 1-14.
|
[8] |
Rovensky Y A, Slavnaja I L, Vasiliev J M. Behavior of fibroblast-like cells on grooved surfaces. Exp. Cell Res., 1971, 65(1): 193-201.
|
[9] |
Chaubey A, Ross K J, Leadbetter R M, et al. Surface patterning: tool to modulate stem cell differentiation in an adipose system. J. Biomed. Mater. Res. B, 2008, 84B(1): 70-78.
|
[10] |
Yim E K F, Pang S W, Leong K W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res., 2007, 313(9): 1820-1829.
|
[11] |
Tzvetkova-Chevolleau T, Stephanou A, Fuard D, et al. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials, 2008, 29(10): 1541-1551.
|
[12] |
Gerecht, S, Bettinger, C J, Zhang, Z, et al. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials, 2007, 28(28): 4068-4077.
|
[13] |
Kunzler, T P, Huwiler, C, Drobek, T, et al. Systematic study of osteoblast response to nanotopography by means of nanoparticle- density gradients. Biomaterials, 2007, 28(33): 5000-5006.
|
[14] |
Lu X, Leng Y. Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. J. Biomed. Mater. Res. A, 2003, 66A(3): 677-687.
|
[15] |
Lu X, Leng Y. Comparison of the osteoblast and myoblast behavior on hydroxyapatite microgrooves. J. Biomed. Mater. Res. B, 2009, 90B(1): 438-445.
|
[16] |
Xia Y, Whitesides G M. Soft lithography. Annu. Rev. Mater. Sci., 1998, 28(1): 153-184.
|
[17] |
Holthaus M, Rezwan K. Comparison of Three Microstructure Fabrication Methods for Bone Cell Growth Studies. ASME Conf. Proc., Evanston, 2008: 483-490.
|
[18] |
Holthaus M, Twardy S, Stolle J, et al. Micromachining of ceramic surfaces: hydroxyapatite and zirconia. J. Mater. Process. Tech., 2012, 212(3): 614-624.
|
[19] |
Berger J, Grosse H M, Pistillo N, et al. Ultraviolet laser interference patterning of hydroxyapatite surfaces. Appl. Surf. Sci., 2011, 257(7): 3081-3087.
|
[20] |
Huang L Q, Zhao J W, Wang Y C, et al. Preparation and study of ordered porous anodic alumina film. Journal of Xi’an Jiaotong University, 2003, 37(10): 1094-1097.
|
[21] |
Wu D, Chen Q D, Yao Jet al. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting. Appl. Phys. Lett. , 2010, 96(5): 053704-1-3.
|
[22] |
Zhu L, Feng Y Y, Ye X Y, et al. Study on controllable wettability of roughness surfaces. Chinese Journal of Sensors and Actuators, 2006, 19(5): 1709-1712.
|
[23] |
Wenzel Robert N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28(8): 988-994.
|
[24] |
Wenzel R N. Surface roughness and contact angle. J. Phys. Chem., 1949, 53(9): 1466-1467.
|
[25] |
Cui X S, Yao X, Liu H H, et al. Superhydrophobic surfaces: design and fabrication of micro/nanomicrotextures and tuning of wetting behavior. Materials China, 2009, 28(12): 41-52.
|
[26] |
Brunette D M. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimension. Exp. Cell. Res., 1986, 164(1): 11-26.
|
[27] |
McKee C T, Raghunathan V K, Nealey P F, et al. Topographic modulation of the orientation and shape of cell nuclei and their influence on the measured elastic modulus of epithelial cells. Biophys. J., 2011, 101(9): 2139-2146.
|
[28] |
Nelson C M, Chen C S. Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Letters, 2002, 514(2/3): 238-242.
|
[29] |
Roca-Cusachs P, Alcaraz J, Sunyer R, et al. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J., 2008, 94(12): 4984-4995.
|