[1] Tinte S, Stachiotti M G, Sepliarsky M, et al. Atomistic modelling of BaTiO3 based on first-principles calculations. J. Phys.: Condens. Matter., 1999, 11: 9679-9690.
[2] 朱振业, 王 彪, 郑 跃, 等(ZHU Zhen-Ye, et al). 应力作用下铁电超晶格BaTiO3/SrTiO3的结构和极化的第一性原理研究. 物理学报(Acta Physica Sinica), 2007, 56(10): 5986-5989.
[3] 罗豪甦, 齐振一, 张冰阳(LUO Hao-Su, et al), 等. BaTiO3晶体的电畴结构和单畴化方法. 无机材料学报(Journal of Inorganic Materials), 1997, 12(3): 309-314.
[4] 冯祖勇, 罗豪甦, 殷之文, 等(FENG Zu-Yong, et al). 铁电单晶Pb(Mg1/3Nb2/3)O3-PbTiO3的高场致应变及其在层叠式驱动器中的应用. 物理学报(Acta Physica Sinica), 2004, 53(10): 3609-3613.
[5] 陈 铭, 姚 熹, 张良莹(CHEN Ming, et al). 部分化学法制备PbNb(Zr, Sn, Ti)O3反铁电陶瓷及其电致应变性能研究. 无机材料学报(Journal of Inorganic Materials), 2002, 17 (3): 515-520.
[6] 李 琳, 周振功, 王 彪. 应力对铁电薄膜电滞回线及蝶形曲线的影响. 功能材料, 2006, 37(4): 580-583.
[7] Choi K J, Biegalski M, Li Y L, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698): 1005-1009.
[8] Kelman M B, Mclntyre P C, Hendrix B C, et al. Effect of applied mechanical strain on the ferroelectric and dielectric properties of Pb(Zr0.35Ti0.65)O3 thin films. J. Appl. Phys., 2003, 93(11): 9231-9236.
[9] Scott J F. Applications of modern ferroelectrics. Science, 2007, 315(5814): 954-959.
[10] 王英龙, 魏同茹, 刘保亭, 等(WANG Ying-Long, et al). 外延PbZr0.4Ti0.6O3薄膜厚度对其铁电性能的影响. 物理学报(Acta Physica Sinica), 2007, 56(5): 2931-2936.
[11] Haeni J H, Irvin P, Chang W, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature, 2004, 430: 758-761.
[12] 许桂生, 罗豪甦, 齐振一, 等(XU Gui-Sheng, et al). 弛豫型铁电体PZNT制备与性能研究的进展. 无机材料学报(Journal of Inorganic Materials), 1999, 14(1): 1-11.
[13] 倪金玉, 郝 跃, 张进成, 等(NI Jin-Yu, et al). 高温AlN插入层对AlGaN/GaN异质结材料和HEMTS器件电学特性的影响. 物理学报(Acta Physica Sinica), 2009, 58(7): 4925-4930.
[14] Pereira V M, Castro Neto A H. Strain engineering of Garphene's electronic structure. Phys. Rev. Lett., 2009, 103(4): 046801-1-4.
[15] Jang H W, Baek S H, Ortiz D, et al. Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys. Rev. Lett., 2008, 101(10): 107602-1-4.
[16] 徐至中(XU Zhi-Zhong). 生长在GexSi1-x(001)衬底上应变GaAs层的价电子能带结构与光学性质. 物理学报(Acta Physica Sinica), 1996, 45(1): 126-132.
[17] Tanaka H, Tabata H, Ota K, et al. Molecular dynamics prediction of structural anomalies in ferroelectric and dielectric BaTiO3-SrTiO3-CaTiO3 solid solutions. Phys. Rev. B, 1996, 53(21): 14112-14116.
[18] 陈育祥, 谢国锋, 马 颖, 等(CHEN Yu-Xiang, et al). BaTiO3晶体结构及弹性的分子动力学模拟. 物理学报(Acta Physica Sinica), 2009, 58(6): 4085-4089.
[19] Ma Y, Chen Y X, Zhou Y C. Molecular dynamics simulations of the radiation-induced structural changes in BaTiO3. Radiat. Eff. Def. Solid, 2008, 163(3): 189-197.
[20] Sepliarsky M, Asthagiri A, Phillpot S R, et al. Atomic-level simulation of ferroelectricity in oxide materials. Curr. Opin. Solid State Mater. Sci., 2005, 9(3): 107-113.
[21] Chen Y X, Liu B N, Ma Y, et al. Modification of a shell modl for the study of the radiation effects in BaTiO3. Nucl. Instr. Meth. B, 2009, 267(18): 3090-3093.
[22] Smith W, Yong C W , Rodger P M. DL_POLY: application to molecular simulation molecular simulation, 2002, 28(5): 385-471.
[23] Nose S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 1984, 52(2): 255-268.
[24] Hoover W G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A, 1985, 31(3): 1695-1697.
[25] Parrinello M, Rahman A. Crystal structure and pair potential: a molecular dynamics study. Phys. Rev. Lett., 1980, 45(14): 1196-1199.
[26] Rabe K M, Ghosez P. First-principles studies of ferroelectric oxides. Top. Appl. Phys., 2007, 105(1437): 117-174.
[27] Ederer C, Spaldin N A. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett., 2005, 95(25): 257601-1-4. |