[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669.
[2] RITALA M, LESKELA M. Atomic layer epitaxy a valuable tool for nanotechnology? Nanotechnology, 1999, 10(1): 19–24.
[3] TAMMENMAA M, KOSKINEN T, HILTUNEN L, et al. Zinc chalcogenide thin films growth by the atomic layer epitaxy technique using zinc acetate as source material. Thin Solid Films, 1985, 124(2): 125–128.
[4] BEDAIR S M. Atomic layer epitaxy deposition processes. J. Vac. Sci. Technol. B, 1994(1): 179–185.
[5] RITALA M, LESKELA M, DEKKER J P, et al. Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition. Chem. Vap. Deposition, 1999, 5(1): 7–9.
[6] MOROZOV S A, MALKOV A A, MALYGIN A A, et al. Interaction of titanium tetrachloride with products of thermal decomposition of basic magnesium carbonate. Russ. J. Appl. Chem., 2003, 76(1): 7–9.
[7] RITALA M, LESKEL? M, NIINIST? L, et al. Titanium isopropoxide as a precursor in atomic layer epitaxy of titanium dioxide thin films. Chem. Mater., 1993, 5(8): 1174–1181.
[8] SUNTOLA. T. Atomic layer epitaxy. Thin Solid Films, 1992, 216(1): 84–89.
[9] ASIKAINEN T, RITALA M, LESKELA R, et al. AFM and STM studies on In2O3 and ITO thin films deposited by atomic layer epitaxy. Appl. Surf. Sci., 1996, 99(2): 91–98.
[10] LIM J, SHIN K, KIM H, et al. Enhancement of ZnO nucleation in ZnO epitaxy by atomic layer epitaxy. Thin Solid films, 2005, 475(1): 256–261.
[11] YOUSFI E B, FOUACHE J, LINCOT D. Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry. Appl. Surf. Sci., 2000, 153(4): 223–234.
[12] AHN C H, WOO C H, HWANG S Y, et al. Influence of active layer thickness and annealing in zinc oxide TFT grown by atomic layer deposition. Surface and Interface Analysis, 2010, 42(6/7): 955–958.
[13] PUURUNEN R L, VANDERVORST W. Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: growth mode modeling and transmission electron microscopy. J. Appl. Phys., 2004, 96(9): 4878–4889.
[14] FONG D, EASTMAN J, KIM S. In situ synchrotron X-ray characterization of ZnO atomic layer deposition. Appl. Phys. Lett., 2010, 97(19): 191904–1–3.
[15] PUURUNEN R L. Correlation between the growth-per-cycle and the surfacen hydroxyl group concentration in the atomic layer deposition of aluminum oxide from trimethylaluminum and water. Appl. Surf. Sci., 2005, 245(1–4): 6–10.
[16] PUURUNEN R L, LINDBLAD M, ROOT A, et al. Successive reactions of gaseous trimethylaluminium and ammonia on porous alumina. Phys. Chem. Chem. Phys., 2001, 3(6): 1093–1102.
[17] PUURUNEN R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys., 2005, 97(12): 121301–1–3.
[18] RITALA M, LESKEL? M, RAUHALA E. Atomic layer epitaxy growth of titanium dioxide thin films from titanium ethoxide. Chem. Mater.,1994, 6(4): 556–561.
[19] YLILAMMI M. Monolayer thickness in atomic layer deposition. Thin Solid Films, 1996, 279(1/2): 124–130.
[20] SIIMON H, AARIK J. Thickness profiles of thin films caused by secondary reactions in flow-type atomic layer deposition reactors. J. Phys. D, 1997, 30(12): 1725–1728.
[21] PUURUNEN R L. Growth per cycle in atomic layer deposition: a theoretical model. Chem. Vap. Depos., 2003, 9(5): 249–257.
[22] KUKLI K, RITALA M, LESKEL? M, et al. Atomic layer deposition of hafnium dioxide films from 1-Methoxy-2-methyl-2-propanolate complex of hafnium. Chem. Mater., 2003, 15(8): 1722–1727.
[23] HAUKKA S, LAKOMAA E L, ROOT A. An IR and NMR study of the chemisorption of TiCl4 on silica. J. Phys. Chem., 1993, 97(19): 5085–5094.
[24] KYT?KIVI A, LAKOMAA E L, ROOT A, et al. Sequential saturating reactions of ZrCl4 and H2O vapors in the modification of silica and- alumina with ZrO2. Langmuir, 1997, 13(10): 2717–2725.
[25] HUANG H W, CHANG W C, LIN S J, et al. Growth of controllable ZnO film by atomic layer deposition technique via inductively coupled plasma treatment. J. Appl. Phys., 2012, 112(12): 124102–1–7.
[26] PUURUNEN R L, ROOT A, HAUKKA S, et al. IR and NMR study of the chemisorption of ammonia on trimethylaluminum- modified silica. J. Phys. Chem. B, 2000, 104(28): 6599–6609.
[27] PUURUNEN R L, ROOT A, SARV P, et al. Growth of aluminum nitride on porous alumina and silica through separate saturated gas-solid reactions of trimethylaluminum and ammonia. Chem. Mater., 2002, 14(2): 720–729.
[28] RAUTIAINEN A, LINDBLAD M, BACKMAN L B, et al. Preparation of silica-supported cobalt catalysts through chemisorption of cobalt(II) and cobalt(III) acetylacetonate. Phys. Chem. Chem. Phys., 2002, 4(11): 2466–2472.
[29] LIM J M, SHIN K, KIM H, et al. Enhancement of ZnO nucleation in ZnO epitaxy by atomic layer epitaxy. Thin Solid Films, 2005, 475(1): 256–261.
[30] ZHOU M, CHEN T, TAN J J, et al. ALD Growth of Ru on RIE-pretreated TaN substrate. Solid-State and Integrated Circuit Technology, 2006. ICSICT '06. 8th International Conference, 2006: 330–332.
[31] KIM S H, HWANG E S, KIM B M, et al. Effects of B2H6 pretreatment on ALD of W film using a sequential supply of WF6 and SiH4. Electrochemical and Solid-State Letters, 2005, 8(10): C155–C159.
[32] MAKINO H, KISHIMOTO S, YAMADA T, et al. Effects of surface pretreatment on growth of ZnO on glass substrate. Phys. Stat. Sol. (a), 2008, 205(8): 1971–1974.
[33] STREHLE S, SCHUMACHER H, SCHMIDT D, et al. Effect of wet chemical substrate pretreatment on the growth behavior of Ta(N) films deposited by thermal ALD. Microelectronic Engineering, 2008, 85(10): 2064–2067.
[34] XU M, XU C H, DING S J, et al. Spectroscopic and electrical properties of atomic layer deposition Al2O3 gate dielectric on surface pretreated Si substrate. J. Appl. Phys., 2006, 99(7): 074109.
[35] KIM S K, HWANG G W, KIM W D, et al. Transformation of the crystalline structure of an ALD TiO2 film on a Ru electrode by O3 pretreatment. Electrochemical and Solid-State Letters, 2006, 9(1): F5–F7.
[36] KIM W H, MAENG W J, MOON K J, et al. Growth characteristics and electrical properties of La2O3 gate oxides grown by thermal and plasma-enhanced atomic layer deposition. Thin Solid Films, 2010, 519(1): 362–366.
[37] FANG Q, HODSON C, XU C G, et al. Nucleation and growth of platinum films on high-k/metal gate materials by remote plasma and thermal ALD. Physics Procedia, 2012, 32: 551–560.
[38] ILLIBERI A, ROOZEBOOM F, POODT P. Spatial atomic layer deposition of zinc oxide thin films. ACS Appl. Mater. Interfaces, 2012, 4(1): 268–272. |