[1]Gaponik N, Wolf A, Marx R, et al. Three-dimensional self-assembly of thiol-capped CdTe nanocrystals: gels and aerogels as building blocks for nanotechnology. Adv. Mater., 2008, 20(22): 4257-4262.
[2]Kagan C R, Murray C B, Nirmal M, et al. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett., 1996, 76(9): 1517-1520.
[3]Crooker S A, Hollingsworth J A, Tretiak S, et al. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett., 2002, 89(18): 186802-1-4.
[4]Parthasarathy R, Lin X M, Jaeger H M. Electronic transport in metal nanocrystal arrays: the effect of structural disorder on scaling behavior. Phys. Rev. Lett., 2001, 87(18): 186807-1-4.
[5]Roest A L, Kelly J J, Vanmaekelbergh D, et al. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. Phys. Rev. Lett., 2002, 89(3): 36801-1-4.
[6]Zeng H, Li J, Liu J P, et al. Exchangecoupled nanocomposite magnets by nanoparticle self-assembly. Nature, 2002, 420(6914): 395-398.
[7]Guo S J, Dong S J, Wang E K. Monodisperse raspberry-like gold submicrometer spheres: large-scale synthesis and interface assembling for colloid sphere array. Cryst. Growth Des., 2008, 8(10): 3581-3585.
[8]Li Y J, Huang W J, Sun S G. An universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew. Chem. Int. Ed., 2006, 45(16): 2537-2539.
[9]Zhang C, Kang Z H, Shen E H, et al. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route. J. Phys. Chem. B, 2006, 110(1): 184-189.
[10]Lee S M, Jun Y W, Cho S N, et al. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nanobuilding blocks. J. Am. Chem. Soc., 2002, 124(38): 11244-11245.
[11]McDonald S A, Konstantatos G, Zhang S G, et al. Solutionprocessed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater., 2005, 4(2): 138-142.
[12]Levina L, Sukhovatkin W, Musikhin S, et al. Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma. Adv. Mater., 2005, 17(15):1854-1857.
[13]Choudhury K R, Sahoo Y, Jang S J, et al. Efficient photosensitization and high optical gain in a novel quantum-dot-sensitized hybrid photorefractive nanocomposite at a telecommunications wavelength. Adv. Funct. Mater., 2005, 15(5): 751-756.
[14]Ge J P, Wang J, Zhang H X, et al. Orthogonal PbS nanowire arrays and networks and their raman scattering behavior. Chem. Eur. J., 2005, 11(6): 1889-1894.
[15]Kuang D, Xu A, Fang Y, et al. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater., 2003, 15(20): 1747-1750.
[16]Ellingson R J, Beard M, Johnson J C, et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano. Lett., 2005, 5(5): 865-871.
|