无机材料学报

• • 上一篇    下一篇

柔性超级电容器硫掺杂石墨烯/导电聚合物复合电极材料的制备及性能研究

秦英1, 姚焯1, 郑丽君1, 包硕1, 李鹏2, 郭诗淇1   

  1. 1.辽宁科技大学 材料与冶金学院,鞍山 114001;
    2.鞍钢股份有限公司能源电力总厂发电事业部,鞍山 114021
  • 收稿日期:2025-09-27 修回日期:2025-11-29
  • 通讯作者: 姚 焯, 讲师. E-mail: yaozhuo1986@163.com; 郑丽君,副教授. E-mail: lijunzheng@ustl.edu.cn
  • 作者简介:秦 英(2002-), 男, 硕士研究生. E-mail: qinying0570@163.com
  • 基金资助:
    国家自然科学基金(52274296); 辽宁科技大学博士科研基金(6003000242)

Sulfur-doped Graphene/Conductive Polymer Composites: Preparation and Performance as Electrode of Flexible Supercapacitor

QIN Ying1, YAO Zhuo1, ZHENG Lijun, BAO Shuo1, LI Peng2, GUO Shiqi1   

  1. 1. School of Materials and Metallurgy, Liaoning University of Science and Technology, Anshan 114001, China;
    2. Power Generation Division, Energy & Power Complex, Angang Steel Company Limited, Anshan 114021, China
  • Received:2025-09-27 Revised:2025-11-29
  • Contact: YAO Zhuo, lecturer. E-mail: yaozhuo1986@163.com; ZHENG Lijun, associate prfessor. Email: lijunzheng@ustl.edu.cn
  • About author:QIN Ying (2002-), male, Master. E-mail: qinying0570@163.com
  • Supported by:
    National Natural Science Foundation of China (52274296); Doctoral Scientific Research Foundation of University of Science and Technology Liaoning (6003000242)

摘要: 物联网、智能医疗和可穿戴电子设备的迅猛发展,对高性能柔性储能器件提出了日益迫切的要求。超级电容器(SC)因其高功率密度和长循环寿命成为理想选择,然而,传统电极材料在柔性条件下常面临比电容有限、机械柔韧性不足以及长期循环稳定性不佳的共性问题,严重制约了其在实际设备中的应用。针对上述挑战,本研究旨在开发一种兼具高电化学性能与优异机械柔性的新型电极材料。通过将硫掺杂石墨烯(SGO)与两种导电聚合物——聚苯胺(PANI)和聚吡咯(PPy)进行三元复合,混合的纳米PANI/PPy导电聚合物相互交织,形成了高导电性的分级多孔网络。SGO中引入的硫原子有效扩大了石墨烯的层间距,显著缓解了石墨烯片层的堆叠问题,暴露更多的活性表面。电化学测试结果表明,所制备的SGO/PANI/PPy三元复合电极材料表现出卓越的性能,其比电容高达561.8 F·g-1,在功率密度为250.62 W·kg-1时,器件的能量密度达到19.51 Wh·kg-1。该电极在经历10000次连续充放电循环后,仍能保持98.12%的初始电容。本研究证实了该三元复合材料作为柔性SCs电极的应用潜力,为通过多组分协同和结构设计解决柔性储能器件的性能瓶颈提供了新的思路。

关键词: 硫掺杂石墨烯, 聚苯胺, 聚丙烯酸, 柔性超级电容器

Abstract: With the rapid development of the Internet of Things, smart healthcare, and wearable electronics, there is an increasingly urgent demand for high-performance flexible energy storage devices. Supercapacitors (SC) have emerged as promising candidates due to their high power density and long cycle life. However, conventional electrode materials often suffer from limited specific capacitance, insufficient mechanical flexibility, and poor long-term cycling stability under flexible conditions, which severely restricts their practical application. To address these challenges, this study aims to develop a novel electrode material that combines high electrochemical performance with excellent mechanical flexibility. By constructing a ternary composite of sulfur-doped graphene oxide (SGO) with two conductive polymers, polyaniline (PANI) and polypyrrole (PPy), a highly conductive hierarchical porous network is formed through the interweaving of mixed nano-sized PANI and PPy. The incorporation of sulfur atoms into SGO effectively enlarges the interlayer spacing of graphene, significantly mitigating the restacking of graphene sheets and thereby exposing more active surfaces. Electrochemical tests demonstrate that the as-prepared SGO/PANI/PPy ternary composite electrode exhibits outstanding performance, delivering a high specific capacitance of 561.8 F·g-1,at a power density of 250.62 W·kg-1, the device achieves an energy density of 19.51 Wh·kg-1. Moreover, the electrode retains 98.12 % of its initial capacitance after 10000 consecutive charge-discharge cycles. This work confirms the great potential of the ternary composite as an electrode for flexible supercapacitors, provides new insights into addressing the performance limitations of flexible energy storage devices through multi-component synergy and structural design.

Key words: sulfur-doped graphene, polyaniline, polypyrrole, flexible supercapacitor

中图分类号: