无机材料学报

• •    

高熵硼化物陶瓷机器学习力场的构建与高温性能计算

龚焕1, 张旭1,2, 张小锋3, 李蓓1,2, 刘凯1   

  1. 1.武汉理工大学 材料科学与工程学院,武汉 430070;
    2.武汉理工大学 材料复合新技术全国重点实验室,武汉 430070;
    3.广东省科学院新材料研究所 特种材料表面工程全国重点实验室, 广州 510650
  • 收稿日期:2025-07-17 修回日期:2025-09-15
  • 通讯作者: 李 蓓, 副教授. E-mail: libei@whut.edu.cn
  • 作者简介:龚 焕(1997-), 男, 硕士研究生. E-mail: 1252744637@qq.com
  • 基金资助:
    国家自然科学基金(52202066)

Machine Learning Potential Development and High-Temperature Property Calculation for High-Entropy Boride Ceramics

GONG Huan1, ZHANG Xu1,2, ZHANG Xiaofeng3, LI Bei1,2, LIU Kai1   

  1. 1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
    2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
    3. National Key Laboratory of Special Materials Surface Engineering, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China
  • Received:2025-07-17 Revised:2025-09-15
  • Contact: LI Bei, associate professor. E-mail: libei@whut.edu.cn
  • About author:GONG Huan (1997-), male, Master candidate. E-mail: 1252744637@qq.com
  • Supported by:
    National Natural Science Foundation of China (52202066)

摘要: 高熵硼化物陶瓷在极端高温环境中的分子动力学模拟受限于经验力场的精度与温度适用性。本研究针对(Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)B2体系,基于第一性原理计算与深度学习方法,开发了高精度深度学习势能。通过主动学习优化训练数据集,显著提升了模型在高温(~3000 K)下的模拟稳定性。该力场在模拟中同时兼具高精度与高效率。验证结果表明,体积状态方程预测与第一性原理较为吻合,证明了模型的良好可扩展性;计算所得晶格常数及力学性能参数与实验值的偏差<2%。尤为重要的是,本研究成功揭示了高熵硼化物陶瓷热膨胀各向异性规律,修正了已有研究中的反常趋势。这项成果为极端条件下高熵硼化物陶瓷的原子尺度模拟提供了可靠工具,对深入理解其高温服役行为具有重要科学价值。

关键词: 高熵硼化物陶瓷, 分子动力学, 深度学习势能, 高温性能

Abstract: Molecular dynamics simulations of high-entropy boride ceramics (HEBCs) in extreme high-temperature environments are constrained by the limited accuracy and temperature stability of empirical force fields. In this work, an high-accuracy deep-learning potential (DP) was proposed and developed for (Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)B2 systems via first-principles calculations and deep learning method. It is shown that, through expanding datasets via the active learning strategy, the DP model stability under high-temperature conditions (i.e., ~3000 K) could be significantly enhanced. The developed DP achieves high accuracy while maintaining computational efficiency. The validation results manifest that the predictions of the volumetric equation of state align well with first-principles calculations, demonstrating the model’s good scalability; and the lattice constants and mechanical properties predicted by DP-enabled molecular dynamics simulations show excellent agreements with experimental observation, with relative errors within 2%. Furthermore, the simulations successfully reveal the anisotropic thermal expansion behavior of HEBCs and rectify the anomalous trends reported in previous research. This DP model provides a reliable tool for atomic-scale simulations of high-entropy boride ceramics under extreme conditions, and holds significant scientific value for advancing the in-depth understanding of their high-temperature service behavior.

Key words: high-entropy boride ceramics, molecular dynamics, deep-learning potential, high temperature property

中图分类号: