[1] 何展军, 黄敏, 林铁军, 等. 光热催化甲烷干重整研究进展. 物理化学学报, 2023, 39(9): 28. [2] KOSTEN S, BODMER P.Editorial for the virtual special issue: the role of plants in regulating aquatic methane fluxes.Aquatic Botany, 2024, 193: 103775. [3] ZHU X C, DI D R, MA M G,et al. Stable isotopes in greenhouse gases from soil: a review of theory and application. Atmosphere, 2019 [4] GU A L, ZHOU S, XU S Q,et al. Energy industry methane emissions trajectory analysis in China until 2050. Atmosphere, 2022, 13(12): 1989. [5] SAUNOIS M, BOUSQUET P, POULTER B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(4): 1561. [6] 胡婉玲, 黄玛兰, 王红玲. 低碳背景下畜牧业甲烷排放现状与减排策略研究. 华中农业大学学报: 自然科学版, 2022, 41(3): 115. [7] GAO J L, GUAN C H, ZHANG B,et al. Decreasing methane emissions from China’s coal mining with rebounded coal production. Environmental Research Letters, 2021, 16(12): 124037. [8] GEUM S, PARK H, CHOI H,et al. Identifying emission sources of CH4 in East Asia based on in situ observations of atmospheric δ13C-CH4 and C2H6. Science of the Total Environment, 2024, 908: 168433. [9] FUJITA R, GRAVEN H, ZAZZERI G, ,et al. Global fossil methane emissions constrained by multi-isotopic atmospheric methane histories. Journal of Geophysical Research: Atmospheres. Global fossil methane emissions constrained by multi-isotopic atmospheric methane histories. Journal of Geophysical Research: Atmospheres, 2025, 130(5): e2024JD041266. [10] XIAO C L, FU B H, SHUI H Q,et al. Detecting the sources of methane emission from oil shale mining and processing using airborne hyperspectral data. Remote Sensing, 2020, 12(3): 537. [11] KNAPP J R, LAUR G L, VADAS P A,et al. Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 2014, 97(6): 3231. [12] 刘桂凤, 皮希宇, 王栓林, 等. 瓦斯抽采与利用技术的现状分析. 煤炭与化工, 2015, 38(3): 5. [13] 李国富, 李超, 霍春秀, 等. 山西重点煤矿区瓦斯梯级利用关键技术与工程示范. 煤田地质与勘探, 2022, 50(9): 42. [14] 高鹏飞. 乏风瓦斯提浓利用技术现状及展望. 矿业安全与环保, 2017, 44(3): 95. [15] 张博, 郭金玲, 高俊莲, 等. 我国甲烷排放控制的中长期挑战与应对. 中国工程科学, 2024, 26(2): 185. [16] BLUMBERG T, MOROSUK T, TSATSARONIS G.A comparative exergoeconomic evaluation of the synthesis routes for methanol production from natural gas.Applied Sciences, 2017, 7(12): 1213. [17] 黄兴, 赵博宇, LOUGOU B G, 等. 甲烷水蒸气重整制氢研究进展. 石油与天然气化工, 2022, 51(1): 53. [18] 罗化峰, 李通达, 乔元栋, 等. Ca(OH)2对煤基活性炭及其催化甲烷裂解制氢的影响. 现代化工, 2021, 41(4): 162. [19] 杨丽, 刘帅, 辛春梅, 等. 炭黑负载增加活性炭缺陷位点催化甲烷裂解制氢机理研究. 煤炭科学技术, 2024, 52(3): 300. [20] ZHANG K K, HUANG Z A, YANG M K,et al. Recent progress in melt pyrolysis: fabrication and applications of high-value carbon materials from abundant sources. SusMat, 2023, 3(5): 558. [21] 李雅欣, 何阳东, 刘韬, 等. 甲烷裂解制氢工艺研究进展及技术经济性对比分析. 石油与天然气化工, 2022, 51(3): 38. [22] 赵西, 王丹, 丁桐, 等. 甲烷等离子体法制氢气和碳材料研究进展. 石油与天然气化工, 2023, 52(1): 40. [23] CHAN Y H, CHAN Z P, LOCK S S M,et al. Thermal pyrolysis conversion of methane to hydrogen (H2): a review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329. [24] 何阳东, 常宏岗, 王丹, 等. 熔融金属法甲烷裂解制氢和碳材料研究进展. 化工进展, 2023, 42(3): 1270. [25] 覃莉, 何阳东, 陈昌武, 等. 熔融法天然气裂解制石墨烯工艺及应用研究. 石油与天然气化工, 2024, 53(5): 25. [26] 覃莉, 何阳东, 曾正荣, 等. 天然气氢炭联产工艺研究进展. 石油与天然气化工, 2023, 52(4): 48. [27] KORÁNYI T I, NÉMETH M, BECK A,et al. Recent advances in methane pyrolysis: turquoise hydrogen with solid carbon production. Energies, 2022, 15(17): 6342. [28] GUNARAYU M R, ABDUL PATAH M F, ASHRI WAN DAUD W M. Advancements in methane pyrolysis: a comprehensive review of parameters and molten catalysts in bubble column reactors.Renewable and Sustainable Energy Reviews, 2025, 210: 115197. [29] BAE D, KIM Y, KO E H,et al. Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures. Applied Energy, 2023, 336: 120810. [30] KANG D, RAHIMI N, GORDON M J,et al. Catalytic methane pyrolysis in molten MnCl2-KCl. Applied Catalysis B: Environmental, 2019, 254: 659. [31] KANG D, PALMER C, MANNINI D,et al. Catalytic methane pyrolysis in molten alkali chloride salts containing iron. ACS Catalysis, 2020, 10(13): 7032. |