无机材料学报

• 研究论文 •    

不同浓度甲烷对熔融盐催化裂解碳产物的形貌调控研究

唐依帆1, 黄泽皑1,2, 张瑞阳1,2, 詹俊杰1, 陈国星3, 杨茗凯1, 刘彤1, 陈红吉1, 周莹1,2   

  1. 1.西南石油大学 新能源与材料学院, 成都 610500;
    2.西南石油大学 油气藏地质及开发工程全国重点实验室, 成都 610500;
    3.达姆施塔特工业大学 材料与地球科学系, 达姆施塔特 64287
  • 收稿日期:2025-06-04 修回日期:2025-08-26
  • 通讯作者: 黄泽皑, 副教授. E-mail: zeai.huang@swpu.edu.cn;周莹, 教授. E-mail: yzhou@swpu.edu.cn
  • 作者简介:唐依帆(2001-), 女, 硕士研究生. E-mail:15309939516@139.com
  • 基金资助:
    国家杰出青年科学基金项目(52325401); 四川省科技计划“揭榜挂帅”项目(2023YFG0375)

Morphology Control of Carbon Products from Catalytic Pyrolysis of Methane with Different Concentrations in Molten Salt

TANG Yifan1, HUANG Zeai1,2, ZHANG Ruiyang1,2, ZHAN Junjie1, CHEN Guoxing3, YANG Mingkai1, LIU Tong1, CHEN Hongji1, ZHOU Ying1,2   

  1. 1. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    3. Department of Materials and Earth Sciences, Technical University Darmstadt, Darmstadt 64287, Germany
  • Received:2025-06-04 Revised:2025-08-26
  • Contact: HUANG zeai, associate professor. E-mail:zeai.huang@swpu.edu.cn; ZHOU Ying, professor. E-mail: yzhou@swpu.edu.cn
  • About author:TANG yifan (2001-), female, Master candidate. E-mail: 15309939516@139.com
  • Supported by:
    National Science Fund for Distinguished Young Scholars (52325401);“Jiebang Guashuai”(Open Challenge and Leadership)Project of Sichuan Science and Technology Program(2023YFG0375)

摘要: 甲烷(CH4)作为温室气体和重要的能源资源, 其高效低碳催化转化对实现“双碳”目标具有重要意义。不同来源的CH4具有显著的浓度差异, 这对其转化技术的选择产生了重要影响。然而, 关于CH4浓度变化对催化性能的影响研究较少, 尤其是在CH4催化裂解制备碳材料领域。本研究以熔融盐催化裂解技术为核心, 系统研究了不同浓度(20%~100%)CH4在CuCl2-NaCl熔融盐体系中的催化裂解行为及碳产物形貌调控机制。结果发现, 石墨烯薄膜的生成归因于高浓度CH4下气泡表面碳原子二维拼接及后续薄膜生长。在CuCl2-NaCl体系下, 高浓度CH4有利于生成规整的石墨烯结构, 低浓度CH4则以形成碎片化碳为主。不同种类的熔融盐体系可形成石墨片、短棒状碳管、薄膜状碳等不同形貌的碳产物, 多种表征手段揭示, 不同浓度条件决定了碳核聚集速率和生长方式。本研究为明确熔融盐体系中CH4浓度梯度驱动下碳产物形貌调控机制提供了理论依据, 对高附加值碳材料绿色制备和低碳技术开发具有重要的参考意义。

关键词: CH4裂解, 熔融介质, 浓度梯度, CuCl2-NaCl, 形貌调控

Abstract: Methane (CH4), as both a greenhouse gas and a crucial energy source, plays an important role in achieving China's carbon peaking and carbon neutrality goals. The significant concentration differences of CH4 from various sources influence the selection of relevant conversion technologies. However, little research has addressed the impact of CH4 concentration variation on catalytic performance, and studies focusing on the catalytic pyrolysis of methane for carbon material production are especially scarce. In this work, molten salt catalytic pyrolysis was employed as the core strategy to systematically investigate the catalytic decomposition behavior of CH4 with varying concentrations (20%-100%) and the morphology control mechanisms of carbon products in a CuCl2-NaCl molten salt system. The results revealed that the formation of graphene films was attributed to the two-dimensional assembly of carbon atoms on bubble surfaces at high CH4 concentrations, followed by subsequent film growth. High CH4 concentration in the CuCl2-NaCl system favored the formation of well-ordered graphene structures, while low concentrations primarily produced fragmented carbon. Furthermore, various molten salt systems yielded different carbon morphologies, including graphite sheets, short rod-like carbon nanotubes, and film-like carbon. Comprehensive characterizations demonstrated that the CH4 concentration determined both the nucleation rate and the growth mode of carbon products. This study elucidates the morphology control mechanisms of carbon products driven by the CH4 concentration gradient in molten salt systems, providing a theoretical basis for the environmentally friendly synthesis of high-value-added carbon materials and the development of low-carbon technologies.

Key words: CH4 pyrolysis, molten medium, concentration gradient, CuCl2-NaCl, morphology control

中图分类号: