无机材料学报

• 研究论文 •    

3D网络结构粉煤灰微珠@碳纳米管微球的制备及吸波性能研究

张晓民1,2, 仝粮语1, 高红洁2, 陈垿1, 闫虎虎1, 高阳1   

  1. 西安建筑科技大学 1.资源工程学院;2.材料科学与工程学院, 西安 710055
  • 收稿日期:2025-04-26 修回日期:2025-06-09
  • 作者简介:张晓民 (1975-), 男, 博士, 教授. E-mail:xmzhang@xauat.edu.cn
  • 基金资助:
    陕西省重点研发计划项目(2024GX-YBXM-420); 咸阳市科技局重点研发计划项目(2021ZDYF-GY-0034); 西安建筑科技大学2024年大学生创新创业国家级项目(202410703063)

Preparation and Electromagnetic Wave Absorption Properties of 3D Network-Structured Fly Ash Microbeads @Carbon Nanotubes Composites

ZHANG Xiaomin1,2,*, TONG Liangyu1, GAO Hongjie2, CHEN Xu1, YAN Huhu1, GAO Yang1   

  1. 1. School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;
    2. School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Received:2025-04-26 Revised:2025-06-09
  • About author:ZHANG Xiaomin (1975-), male, PhD, professor. E-mail: xmzhang@xauat.edu.cn
  • Supported by:
    Shaanxi Province Key Research and Development Program Project (2024GX-YBXM-420); Xianyang City Science and Technology Bureau Key Research and Development Program Project (2021ZDYF-GY-0034); Xi'an University of Architecture and Technology 2024 National-level Undergraduate Innovation and Entrepreneurship Project (202410703063)

摘要: 随着5G通信和电子设备小型化的快速发展,开发轻量化、宽频高效电磁波吸收材料成为解决电磁污染与信息泄露问题的关键。传统吸波材料面临密度高、吸收频带窄及环境相容性差等瓶颈,而工业固废资源化利用为高性能吸波材料设计提供了兼具经济与生态效益的创新路径。本研究以燃煤电厂固废粉煤灰为原料,通过磁选富集获得磁性粉煤灰微珠(MFA),利用其表面原位负载的Fe基纳米颗粒作为催化剂,采用化学气相沉积法(CVD)成功构筑了具有3D网络结构的磁性粉煤灰微珠@碳纳米管(MFA@CNTs)复合吸波材料。微观结构表征表明,MFA微珠表面生长的竹节状CNTs通过管间缠绕与硅酸盐骨架桥接形成多孔结构。吸波性能测试表明,复合材料在8.8 GHz处获得最小反射损耗(RLmin) 达到 -44.52 dB(厚度为2.99 mm),有效吸收带宽(EAB, RL < -10 dB)覆盖4.72 GHz (厚度1.7 mm)。电磁吸波性能提升机制源于:(1)MFA微珠的磁性组分(Fe₃O₄)与CNTs的导电网络形成磁-电耦合效应,优化阻抗匹配;(2)竹节状CNTs的缺陷结构诱导多重极化弛豫(界面极化、偶极极化),增强介电损耗;(3)3D多孔网络延长电磁波传播路径,促进多重反射与散射损耗。本研究不仅为工业固废高值化利用提供了新范式,也为轻量化宽频吸波材料的设计奠定了理论与技术基础。

关键词: 粉煤灰微珠@碳纳米管微球, 3D网络结构, 电磁波吸收

Abstract: With the rapid development of 5G communication and miniaturization of electronic devices, the development of lightweight, broadband and high-efficiency electromagnetic wave absorbing materials has emerged as a critical solution to the challenges posed by electromagnetic pollution and information leakage. Traditional absorbing materials face significant limitations, such as high density, narrow absorption band and poor environmental compatibility, while the resource utilization of industrial solid waste provides an innovative path for the design of high-performance absorbing materials with both economic and ecological benefits. In this study, magnetic fly ash (MFA) beads were derived from the solid waste of coal-fired power plants through magnetic separation. Additionally, magnetic fly ash @carbon nanotubes (MFA@CNTs) composite wave-absorbing materials with a three-dimensional interpenetrating network structure were successfully constructed by chemical vapor deposition (CVD) using in situ-loaded Fe-based nanoparticles on the surface of the MFA beads as catalysts. Microstructural characterization showed that the bamboo-like CNTs grown on the surface of the MFA microbeads formed a porous structure by inter tubular winding and bridging with the silicate framework. The composite material achieves minimum reflection loss (RLmin) of -44.52 dB at 8.8 GHz (with thickness of 2.99 mm) and effective absorption bandwidth (EAB, RL < -10 dB) covering 4.72 GHz (with thickness of 1.7 mm). The performance enhancement mechanism can be attributed to the following: (1) the magnetic component (Fe₃O₄) present in the MFA beads interacts with the conductive network of the CNTs, thereby establishing a magneto-electrical coupling effect to optimize the impedance matching; (2) the defective structure of the bamboo-like CNTs induces multiple polarization relaxation (including interfacial and dipole polarizations), significantly enhancing the dielectric loss; and (3) the 3D porous network extends the propagation path of electromagnetic wave, thereby promoting multiple reflection and scattering losses. This study not only provides a new paradigm for high-value utilization of industrial solid waste, but also lays a theoretical and technical foundation for the design of lightweight broadband wave-absorbing materials.

Key words: MFA@CNTs composites, 3D network structure, electromagnetic wave absorption

中图分类号: