无机材料学报

• 研究论文 •    下一篇

配体羟基改性增强UiO-66的光热催化氧化VOCs性能

陈笑晨1,2(), 王阳2, 杨彬1, 王敏2, 阿博涵2, 王蔓2, 张玲霞1,2()   

  1. 1 中国科学院杭州高等研究院, 杭州 310024
    2 中国科学院上海硅酸盐研究所, 上海 200050

Ligand-hydroxylated UiO-66 for Enhanced Photothermally Catalytic VOCs Oxidation

CHEN Xiaochen1,2(), WANG Yang2, YANG Bin1, WANG Min2, A Bohan2, WANG Man2, ZHANG Lingxia1,2()   

  1. 1 School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
    2 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2025-04-13 Revised:2025-06-26
  • Contact: ZHANG Lingxia, professor. E-mail: zhlingxia@mail.sic.ac.cn
  • About author:CHEN Xiaochen (1999-), male, Master candidate. E-mail: chenxiaochen22@mails.ucas.ac.cn
  • Supported by:
    National Natural Science Foundation of China (22405287); Science and Technology Commission of Shanghai (24DZ2201600, 24ZR1475800); China Postdoctoral Science Foundation (2024M760699)

摘要:

在室内和工业环境中,高效去除低浓度挥发性有机化合物(VOCs)依然是一个重大挑战。金属有机框架(MOFs)对低浓度VOCs具有优异的吸附富集能力,被认为是一种有潜力的氧化催化剂。本研究通过在配体中引入羟基,合成了UiO-66-OH催化剂,其对低浓度VOCs(甲苯质量浓度0.075 mg/L,苯质量浓度0.064 mg/L,空速(WHSV)30000 mL/(g∙h))表现出优异的光热催化氧化性能,对甲苯和苯的转化率分别达到了97%和90%,优于已报道的金属氧化物和贵金属光热催化剂。其优异的催化活性主要归因于热催化与光催化的协同效应。配体羟基化优化了UiO-66的电子结构及配体-金属-电荷转移效应(LMCT),从而增强了光吸收能力,提高了电子-空穴分离效率和光热性能。同时,引入羟基还促进了氧空位的生成,有利于O2吸附活化,生成的超氧自由基(∙O2-)为主要活性氧物种。本研究不仅展示了MOFs在低浓度VOCs光热催化氧化中的应用潜力,也提供了一种通过配体工程调控电子结构来提升MOFs光热性能的有效策略。

关键词: 挥发性有机化合物, 低浓度, 金属-有机框架, 光热催化, 配体-金属电荷转移效应

Abstract:

The efficient removal of low-concentration volatile organic compounds (VOCs) in indoor and industrial environments remains a significant challenge. Metal-organic frameworks (MOFs) are potential oxidation catalysts due to their superior adsorption enrichment capability for low-concentration VOCs. In this work, hydroxyl-containing ligands were introduced into UiO-66, and the as-synthesized UiO-66-OH catalyst exhibited exceptional photothermal catalytic performance on oxidation of flowing low-concentration VOCs (an initial concentration of 0.075 mg/L for toluene and 0.064 mg/L for benzene, a weight hourly space velocity (WHSV) of 30000 mL/(g∙h)), achieving 97% and 90% conversion of toluene and benzene, respectively, surpassing the reported photothermal catalysts such as metal oxides and noble-metal-loaded catalysts. Such impressive activity is attributed to the synergy of thermal catalysis and photocatalysis. Ligand hydroxylation optimizes the electron structure and the ligand-to-metal charge transfer (LMCT) effect, enhancing light absorption, improving electron-hole separation efficiency and photothermal properties of UiO-66. Hydroxyl introduction promotes the formation of oxygen vacancies, facilitating oxygen adsorption/activation to sustain lattice oxygen (Olatt) and generate superoxide radical (∙O2-), which are the dominant reactive species in VOCs oxidation. This work not only presents the potential of MOFs as efficient photothermal catalysts for the oxidation of low-concentration VOCs but also shows prospective on facile modulation of electron structure by ligand engineering to enhance the photothermal properties of MOFs.

Key words: volatile organic compound, low concentration, metal-organic framework, photothermal catalysis, ligand-to-metal charge transfer effect

中图分类号: