无机材料学报 ›› 2022, Vol. 37 ›› Issue (12): 1321-1328.DOI: 10.15541/jim20220080 CSTR: 32189.14.10.15541/jim20220080
焦志翔1(), 贾帆豪1,2(), 王永晨1, 陈建国1, 任伟2, 程晋荣1()
收稿日期:
2022-02-17
修回日期:
2022-03-29
出版日期:
2022-12-20
网络出版日期:
2022-08-04
通讯作者:
程晋荣, 研究员. E-mail: jrcheng@shu.edu.cn;作者简介:
焦志翔(1996-), 男, 硕士研究生. E-mail: jzxxxzj@163.com
基金资助:
JIAO Zhixiang1(), JIA Fanhao1,2(), WANG Yongchen1, CHEN Jianguo1, REN Wei2, CHENG Jinrong1()
Received:
2022-02-17
Revised:
2022-03-29
Published:
2022-12-20
Online:
2022-08-04
Contact:
CHENG Jinrong, professor. E-mail: jrcheng@shu.edu.cn;About author:
JIAO Zhixiang (1996-), male, Master candidate. E-mail: jzxxxzj@163.com
Supported by:
摘要:
钙钛矿(ABO3)型压电陶瓷的发展已有几十年历史, 现存有大量数据, 从这些数据中寻找出材料结构与性能之间的关系很有意义。本工作收集了BiFeO3-PbTiO3-BaTiO3钙钛矿型压电陶瓷居里温度(Tc)实验数据, 通过机器学习,构建钙钛矿型压电陶瓷Tc的预测模型。热力学角度, Tc与约合质量符合二次多项式关系, 但偏差较大。选择元素信息、物理量、空间群编号等基础描述符, 利用基于压缩感知原理的SISSO(Sure Independence Screening and Sparsifying Operator)方法进行机器学习, 找出了Tc与成分之间的相关性。比较不同描述符在不同维度上的均方根误差RMSE (Root Mean Square Error), 发现描述符越多、越基础, 维数越大、RMSE越小。同时比较相同个数描述符在同一维度下的RMSE, 用约合质量、A位和B位的离子半径比、A位和B位的未填充电子数比和Ba、Pb、Bi的元素含量等六个描述符构建出最优的四维模型, 其RMSE为0.59 ℃, 最大绝对误差(MaxAE)为1.38 ℃, 外部测试的平均相对误差MRE (Mean Relative Error)为1.00%。结果表明,利用SISSO可以进行有限样本钙钛矿型压电陶瓷Tc的机器学习预测。
中图分类号:
焦志翔, 贾帆豪, 王永晨, 陈建国, 任伟, 程晋荣. 基于机器学习的BiFeO3-PbTiO3-BaTiO3固溶体居里温度预测[J]. 无机材料学报, 2022, 37(12): 1321-1328.
JIAO Zhixiang, JIA Fanhao, WANG Yongchen, CHEN Jianguo, REN Wei, CHENG Jinrong. Curie Temperature Prediction of BiFeO3-PbTiO3-BaTiO3 Solid Solution Based on Machine Learning[J]. Journal of Inorganic Materials, 2022, 37(12): 1321-1328.
Feature | Name | Physical attributes |
---|---|---|
μ | Reduced mass | Reduced mass of atoms |
A/B | Ionic radius | Shannon ion radius |
A/B_C | Covalent radius | The covalent bond radius of an atom |
A/B_E | Electronegativity | Electronegativity of atoms |
A/B_NV | NValence | The number of electrons of unfilled orbitals |
A/B_NU | NUfilled | The number of electrons of unfilled orbitals |
A/B_S | Space group numbering | The serial number of the element's space group in the space group table |
Ti,Fe,Ba,Pb,Bi | Element content | Element content ratio of metal ions |
表1 基础描述符及其物理意义
Table 1 Basic descriptor and related physical meaning
Feature | Name | Physical attributes |
---|---|---|
μ | Reduced mass | Reduced mass of atoms |
A/B | Ionic radius | Shannon ion radius |
A/B_C | Covalent radius | The covalent bond radius of an atom |
A/B_E | Electronegativity | Electronegativity of atoms |
A/B_NV | NValence | The number of electrons of unfilled orbitals |
A/B_NU | NUfilled | The number of electrons of unfilled orbitals |
A/B_S | Space group numbering | The serial number of the element's space group in the space group table |
Ti,Fe,Ba,Pb,Bi | Element content | Element content ratio of metal ions |
图4 不同运算方式下μ和μ*A/B随维度变化的RMSE和MaxAE
Fig. 4 RMSE and MaxAE of μ and μ*A/B varied with dimension under different operation modes (a, c) use operation mode 1; (b, d) use operation mode 2; (a, b) use the descriptor μ; (c, d) use the descriptor μ*A/B
图6 描述符的变化和模型维度对拟合结果RMSE和MaxAE的影响
Fig. 6 Effects of the changes of descriptor and model dimension on the RMSE and MaxAE (a) μ and A/B are the first two descriptors, and the third descriptor changes; (b) μ, A/B, Ba, Pb, and Bi are the first five descriptors, and the sixth descriptor changes; (c) μ and A/B are the first two descriptors and the third to seventh descriptors are introduced one by one. (d) Effect of the change of the dimension of the model fitted by six finally selected descriptors (μ, A/B, A/B_NU, Ba, Pb, and Bi) on RMSE and MaxAE
Sample | Tc/℃ (y) | μʹ (x1) | A/Bʹ (x2) | A/B_NU (x3) | Ba (x4) | Pb (x5) | Bi (x6) |
---|---|---|---|---|---|---|---|
Bi0.62Pb0.23Ba0.15Fe0.62Ti0.38O3 | 547 | 0.2821 | 0.3882 | 0.5036 | 0.0750 | 0.1150 | 0.3100 |
Bi0.6Pb0.25Ba0.15Fe0.6Ti0.4O3 | 540 | 0.2690 | 0.4606 | 0.5000 | 0.0750 | 0.1250 | 0.3000 |
Bi0.54Pb0.31Ba0.15Fe0.54Ti0.46O3 | 502 | 0.2295 | 0.6789 | 0.4897 | 0.0750 | 0.1550 | 0.2700 |
表2 调整描述符参数后的测试集
Table 2 The test sets after adjusting descriptor parameters
Sample | Tc/℃ (y) | μʹ (x1) | A/Bʹ (x2) | A/B_NU (x3) | Ba (x4) | Pb (x5) | Bi (x6) |
---|---|---|---|---|---|---|---|
Bi0.62Pb0.23Ba0.15Fe0.62Ti0.38O3 | 547 | 0.2821 | 0.3882 | 0.5036 | 0.0750 | 0.1150 | 0.3100 |
Bi0.6Pb0.25Ba0.15Fe0.6Ti0.4O3 | 540 | 0.2690 | 0.4606 | 0.5000 | 0.0750 | 0.1250 | 0.3000 |
Bi0.54Pb0.31Ba0.15Fe0.54Ti0.46O3 | 502 | 0.2295 | 0.6789 | 0.4897 | 0.0750 | 0.1550 | 0.2700 |
Sample | Experim- ental Tc/℃ | Predi- ction Tc/℃ | Abso- lute error/℃ | Rela- tive- error/% |
---|---|---|---|---|
Bi0.62Pb0.23Ba0.15Fe0.62Ti0.38O3 | 547 | 544.91 | 2.09 | 0.38 |
Bi0.6Pb0.25Ba0.15Fe0.6Ti0.4O3 | 540 | 536.12 | 3.88 | 0.72 |
Bi0.54Pb0.31Ba0.15Fe0.54Ti0.46O3 | 502 | 492.52 | 9.48 | 1.89 |
表3 外部验证集结果
Table 3 Results of external verification set
Sample | Experim- ental Tc/℃ | Predi- ction Tc/℃ | Abso- lute error/℃ | Rela- tive- error/% |
---|---|---|---|---|
Bi0.62Pb0.23Ba0.15Fe0.62Ti0.38O3 | 547 | 544.91 | 2.09 | 0.38 |
Bi0.6Pb0.25Ba0.15Fe0.6Ti0.4O3 | 540 | 536.12 | 3.88 | 0.72 |
Bi0.54Pb0.31Ba0.15Fe0.54Ti0.46O3 | 502 | 492.52 | 9.48 | 1.89 |
[1] |
CHEN J, QI Y, SHI G, et al. A high temperature piezoelectric ceramic: (1-x)(Bi0.9La0.1)FeO3-xPbTiO3 crystalline solutions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 2009, 56(9): 1820-1825.
DOI URL |
[2] |
CHEN J, JIN D, CHENG J. Impedance spectroscopy studies of 0.7Bi(Fe1-xGax)O3-0.3PbTiO3 high temperature piezoelectric ceramics. J. Alloys Compd., 2013, 580: 67-71.
DOI URL |
[3] |
CHENG J, YU S, CHEN J, et al. Dielectric and magnetic enhancements in BiFeO3-PbTiO3 solid solutions with La doping. Appl. Phys. Lett., 2006, 89(12): 122911.
DOI URL |
[4] |
CHEN J, CHENG J. Enhanced high-field strain and reduced high- temperature dielectric loss in 0.6(Bi0.9La0.1)(Fe1-xTix)O3-0.4PbTiO3 piezoelectric. Ceram. Int., 2015, 41(1): 1617-1621.
DOI URL |
[5] | 谢颖. ABO3型钙钛矿的相变机理表面稳定性和电子结构的理论研究. 哈尔滨: 黑龙江大学出版社, 2015. |
[6] | MURPHY K. Machine learning:a probabilistic perspective. Cambridge: The MIT Press, 2012, 58(8): 27-71. |
[7] | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit- learn: machine learning in python. Journal of Machine Learning Research, 2011, 12(10): 2825-2830. |
[8] |
RUPP M, TKATCHENKO A, MÜLLER K, et al. Fast and accurate modeling of molecular atomization energies with machine learning. Phy. Rev. Lett., 2012, 108(5): 058301.
DOI URL |
[9] |
JORDAN M, MITCHELL T. Machine learning: trends, perspectives, and prospects. Science, 2015, 349(6245): 255-260.
DOI PMID |
[10] |
ZHONG M, TRAN K, MIN Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581(7807): 178-183.
DOI URL |
[11] |
BATRA R. Accurate machine learning in materials science facilitated by using diverse data sources. Nature, 2021, 589(7843): 524-525.
DOI URL |
[12] | RANDHAWA G, HILL K, KARI L. ML-DSP: Machine learning with digital signal processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels. BioMed Central, 2019, 20(1): 267-23. |
[13] |
CHENG Z, ZHU E, CHEN N. Application of orthogonal expansion to mapping and modelling. Chemometr., 1993, 7(4): 243-253.
DOI URL |
[14] |
CHEN N, LI C, QIN P. Chemical pattern recognition applied to materials optimal design and industry optimization. Chin. Sci. Bull., 1997, 42(10): 793-799.
DOI URL |
[15] |
CHEN N, LU W, CHEN R, et al. Chemometric methods applied to industrial optimization and materials optimal design. Chemom. Intel. Lab. Syst., 1999, 45(1): 329-333.
DOI URL |
[16] |
CHEN N, ZHU D, WANG W. Intelligent materials processing by hyperspace data mining. Eng. Appl. Artif. Intel., 2000, 13(5): 527-532.
DOI URL |
[17] |
RESTA R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Review Modern Physics, 1994, 66(3): 899-916.
DOI URL |
[18] |
ARMIENTO R, KOZINSKY B, FORNARI M, et al. Screening for high-performance piezoelectrics using high-throughput density functional theory. Physics Review B, 2011, 84(1): 014103.
DOI URL |
[19] |
PRASANNA V, BENJAMIN K, ALP S, et al. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning. Nature Communications, 2018, 9: 1668.
DOI PMID |
[20] |
EVAN M, SUHAS Y, ILYA G. Prediction of the Curie temperatures of ferroelectric solid solutions using machine learning methods. Computational Materials Science, 2021, 199(7061): 110730.
DOI URL |
[21] | OUYANG R, CURTAROLO S, AHMETCIK E, et al. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater., 2018, 2(8): 083802. |
[22] |
OUYANG R, AHMETCIK E, CARBOGNO C, et al. Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO. J. Phys.: Mater., 2019, 2(2): 024002.
DOI URL |
[23] |
OUYANG R. Exploiting ionic radii for rational design of halide perovskites. Chem. Mater., 2020, 32(1): 595-604.
DOI URL |
[24] | NING Z. Dielectric, ferroelectric, piezoelectric and aging properties of BiFeO3-PbTiO3-BaTiO3 high temperature piezoelectric ceramics. Shanghai: Master Thesis, Shanghai University, 2020. |
[25] | TU T. Fabrication of BF-PT-BT high temperature piezoelectric ceramics and sensors. Shanghai: Master Thesis, Shanghai University, 2017. |
[26] |
CHRISTOPHER J, CHRISTOPHER S, BRYAN R, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 2019, 5(2): eaav0693.
DOI URL |
[27] | BUTLER K, FROST J, SKELTON J, et al. Computational materials design of crystalline solids. Che. Soc. Rev., 2016, 45(22): 6138-6146. |
[28] |
YU J, ITOH M. Physics-guided data-mining driven design of room- temperature multiferroic perovskite oxides. Phys. Status Solidi RRL, 2019, 13(6): 1900028.
DOI URL |
[29] | UUSI E, MALM J, IMAMURA N, et al. Characterization of RMnO3 (R=Sc, Y, Dy-Lu): high-pressure synthesized metastable perovskites and their hexagonal precursor phases. Materials Chemistry & Physics, 2008, 112(3): 1029-1034. |
[30] |
SCHOBER P, BOER C, SCHWARTE L. Correlation coefficients: appropriate use and interpretation. Anesthesia and Analgesia, 2018, 126(5): 1763-1768.
DOI PMID |
[31] |
YANG X, LI M, SU Q, et al. QSAR studies on pyrrolidine amides derivatives as DPP-IV inhibitors for type 2 diabetes. Medicinal Chemistry Research, 2013, 22(11): 5274-5283.
DOI URL |
[1] | 施思齐, 孙拾雨, 马舒畅, 邹欣欣, 钱权, 刘悦. 融合材料领域知识的数据准确性检测方法[J]. 无机材料学报, 2022, 37(12): 1311-1320. |
[2] | 张瑞鸿, 魏鑫, 卢占会, 艾玥洁. 基于机器学习训练金属离子吸附能预测模型的研究[J]. 无机材料学报, 2021, 36(11): 1178-1184. |
[3] | 孟嫣然, 王星尔, 杨健, 徐涵, 岳峰. 基于机器学习算法的夹层玻璃冲击破坏预测模型研究[J]. 无机材料学报, 2021, 36(1): 61-68. |
[4] | 郭霖, 乔显集, 李修芝, 龙西法, 何超. 三元陶瓷Pb(In1/2Nb1/2)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3准同型相界附近组分的介电、铁电和压电性能[J]. 无机材料学报, 2020, 35(12): 1380-1384. |
[5] | 石 维, 冷森林, 龙 禹, 朱建国, 肖定全. BiYbO3固溶极限对BSPT压电陶瓷结构和电学性能的影响[J]. 无机材料学报, 2013, 28(06): 623-628. |
[6] | 李燕燕,李国荣,王天宝,郑嘹赢,冷森林,殷庆瑞. Nb2O5掺杂高温无铅(Ba,Bi,Na)TiO3基PTCR陶瓷结构与电性能研究[J]. 无机材料学报, 2009, 24(2): 374-378. |
[7] | 冯亚军,徐 卓,李振荣,张 麟,姚 熹. 准同型相界(MPB)附近BS-PT高温压电陶瓷研究[J]. 无机材料学报, 2006, 21(5): 1127-1133. |
[8] | 王升,张树人,周晓华,李波,陈祝. BaTiO3-Nb2O5-Ni2O3三元系统的介电性能研究[J]. 无机材料学报, 2006, 21(2): 369-374. |
[9] | 蔡之让 刘宁,童伟,徐素军,张裕恒. (La0.6Dy0.1)Sr0.3MnO3的磁热效应研究[J]. 无机材料学报, 2005, 20(3): 618-622. |
[10] | 冯全源,陈伟,任朗. 移相器材料Zn、Ti、Sn替代锂铁氧体[J]. 无机材料学报, 2000, 15(3): 527-530. |
[11] | 黄宣威,李承恩. Ca-(Na,Ce)-Bi-Ti系列高温压电陶瓷材料及其压电性能的研究[J]. 无机材料学报, 1998, 13(1): 59-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||