无机材料学报

• •    

热交换坩埚下降法制备大尺寸氟化铈晶体的热场设计与优化

穆宏赫1, 王鹏飞1, 施宇峰1, 张中晗1, 武安华1,2, 苏良碧1,2   

  1. 1. 中国科学院 上海硅酸盐研究所,透明光功能无机材料重点实验室,上海 201899;
    2. 中国科学院大学 材料科学与光电工程中心,北京 100049
  • 收稿日期:2022-08-15 修回日期:2022-09-08
  • 作者简介:穆宏赫(1997-), 女, 硕士研究生. E-mail: muhonghe@mails.ucas.ac.cn.
  • 基金资助:
    国家重点研发计划(2021YFB3602503); 上海市科学技术委员会项目(2051107400, 20520750200); 中国科学院稳定支持基础研究领域青年团队计划(YSBR-024); 中国科学院一带一路国际合作项目(121631KYSB20200039); 中国电子科技集团第九研究所对外开放项目(2022SK-013)

Thermal Field Design and Optimization for Large-size CeF3 Crystal Growth by Heat Exchanger-Bridgman Method

MU Honghe1, WANG Pengfei1, SHI Yufeng1, ZHANG Zhonghan1, WU Anhua1,2, SU Liangbi1,2   

  1. 1. Key Laboratory of Transparent Opto-fuctional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China;
    2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-08-15 Revised:2022-09-08
  • About author:MU Honghe (1997-), female, Master candidate. E-mail: muhonghe@mails.ucas.ac.cn
  • Supported by:
    National Key Research and Development Program of China (2021YFB3602503); Science and Technology Commission of Shanghai Municipality (2051107400, 20520750200); CAS Project for Young Scientists in Basic Research (YSBR-024); International Partnership Program of Chinese Academy of Sciences (121631KYSB20200039); Open Project of the 9th Research Institute of China Electronics Technology Group Corporation (2022SK-013)

摘要: 随着CeF3晶体在激光和磁光领域应用的持续发展,大尺寸、高光学质量的CeF3单晶的需求日益急迫,而CeF3熔体的高黏度和低热导率特性给晶体生长工艺带来了较大挑战。为研究CeF3熔体低导热性引发的生长问题,探究其生长过程中炉体结构和工艺参数对温度分布和结晶界面的影响机制,本工作对热交换坩埚下降法(Heat Exchanger-Bridgman method, HEB)生长Φ80 mm CeF3晶体中炉体结构与晶体/熔体温度分布关系、不同生长阶段界面的变化规律以及热场结构对生长界面的作用机制开展了数值模拟研究。研究结果表明:发热体长度与坩埚长度相适应时更有利于构建合理的温度梯度场,而放肩和等径生长阶段的凹界面问题则可以通过改变隔板形状和加反射屏调节坩埚壁温度分布来有效解决。本研究不仅有望加深对CeF3晶体结晶习性的理解,炉体结构和生长界面的优化思路对坩埚下降法制备其他晶体同样有实际指导意义。

关键词: CeF3晶体, 热交换坩埚下降法, 数值模拟, 固液界面, 热场优化

Abstract: With the continuous development of CeF3 crystals in laser and magneto-optical applications, the demand for CeF3 single crystals with large size and high optical quality has become increasingly urgent, while the high viscosity and low thermal conductivity of CeF3 melt always bring challenges to crystal growth process. In order to study the growth problem caused by the low thermal conductivity of CeF3 melt, the influence mechanism of the furnace structure and process parameters on the temperature distribution and crystallographic interface during the growth process will be explored. In this paper, numerical simulations about the growth of a Φ80 mm CeF3 crystal through the heat exchanger-Bridgman method were carried out to analyze the relationship between furnace structure and crystal/melt temperature distribution, the variation of interface shape in different growth stages, and the mechanism of thermal field structure on the growth interface. Results show that when the length of the heating element matches the length of the crucible, it is more conducive to construct a reasonable temperature gradient field. The unfavorable concave interface during the “shouldering” and “cylindering” growth stages can be effectively improved by adjusting temperature distribution on the ampoule wall through changing the shape of the baffle and adding a reflective screen. This work is not only expected to deepen the understanding of the crystallization habit of CeF3 crystals, may also enlighten the furnace and growth interface optimization of other crystals’ Bridgman growth.

Key words: CeF3 crystal, heat exchanger-Bridgman method, numerical simulation, solid-liquid interface, thermal field optimization

中图分类号: