无机材料学报, 2023, 38(6): 634-646 DOI: 10.15541/jim20220640

综述

热管理用高导热碳化硅陶瓷基复合材料研究进展

陈强,, 白书欣,, 叶益聪,

国防科技大学 空天科学学院 材料科学与工程系, 长沙410073

Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review

CHEN Qiang,, BAI Shuxin,, YE Yicong,

Department of Materials Science and Engineering, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, China

通讯作者: 白书欣, 教授. E-mail:shuxinde2021@163.com;叶益聪, 教授. E-mail:Yeyicognde2021@163.com

收稿日期: 2022-10-31   修回日期: 2023-01-18   网络出版日期: 2023-01-31

Corresponding authors: BAI Shuxin, professor. E-mail:shuxinde2021@163.com;YE Yicong, professor. E-mail:Yeyicognde2021@163.com

Received: 2022-10-31   Revised: 2023-01-18   Online: 2023-01-31

摘要

碳化硅陶瓷基复合材料以其高比强度、高比模量、高导热、良好的耐烧蚀性能、高温抗氧化性、抗热震性能等特性, 广泛应用于航空航天、摩擦制动、核聚变等领域, 成为先进的高温结构及功能材料。本文综述了高导热碳化硅陶瓷基复合材料制备及性能等方面的最新研究进展。引入高导热相, 如金刚石粉、中间相沥青基碳纤维等用以增强热输运能力; 优化热解炭炭与碳化硅基体界面用以降低界面热阻; 热处理用以获得结晶度更高、导热性能更好的碳化硅基体; 设计预制体结构用以建立连续导热通路等方法, 提高碳化硅陶瓷基复合材料的热导率。此外, 本文展望了高导热碳化硅陶瓷基复合材料后续研究方向, 即综合考虑影响碳化硅陶瓷基复合材料性能要素, 优化探索高效、低成本的制备工艺; 深入分析高导热碳化硅陶瓷基复合材料导热机理, 灵活运用复合材料结构与性能的构效关系, 以期制备尺寸稳定、具有优异热物理性能的各向同性高导热碳化硅陶瓷基复合材料。

关键词: 热管理; 高导热; 碳化硅; 复合材料; 综述

Abstract

Silicon carbide ceramic matrix composites have been widely used in aerospace, friction brake, fusion fields and so on, and become advanced high-temperature structural and functional composites, due to their high specific strength and specific modulus, excellent ablation and oxidation resistance, and high conductivity and good thermal shock resistance. This paper reviews the latest research progress in preparation and property of silicon carbide ceramics matrix composites (CMCs) with high thermal conductivity. Researchers have improved the thermal conductivity of silicon carbide CMCs, including by introducing highly thermal conductive phases for reinforcing heat transport, such as diamond powders, and mesophase pitch-based carbon fibers (MPCF), by optimizing the interface between pyrolytic carbon (PyC) and silicon carbide matrix for reducing interfacial thermal resistance, by heat-treating for obtaining silicon carbide matrix with higher crystallinity and better thermal conductivity, and by designing preform structure for establishing continuous thermal conduction path. Meanwhile, research interests on silicon carbide CMCs are to explore new preparation with high efficiency and low cost through optimising their influencing factors, and to obtain isotropic highly thermal conductivity with dimensional stability and physical properties through deep understanding their thermal conductive mechanism, and flexible method based on the structure-activity relationship.

Keywords: thermal management; high thermal conductivity; silicon carbide; composite; review

PDF (7177KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展. 无机材料学报, 2023, 38(6): 634-646 DOI:10.15541/jim20220640

CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review. Journal of Inorganic Materials, 2023, 38(6): 634-646 DOI:10.15541/jim20220640

高音速或超高音速飞行器以其超高马赫数和长巡航机时, 其前缘机翼及前锥尖端与高速气流相互作用, 高速粒子剧烈烧蚀, 导致飞行器表面温度很高(>1800 ℃), 进而对热防护系统(Thermal Protection System, TPS)[1-2]和热结构材料(Thermostructural Composites, TSM)产生严重烧蚀。在核聚变领域, 包层材料需长期处于中子辐照、高温高压、粒子溅射等严苛的服役环境[3]。同样, 在民用领域, 摩擦制动系统产生的温度很高, 要求材料在具有较好的耐摩擦磨损性能的同时具有优异的热物理性质[4-6]。高热导率(Thermal Conductivity, TC)的材料, 可将局部高热负荷转移到低温区域, 迅速减少局部结构热损伤, 延长材料服役寿命[7-8]

碳化硅(Silicon Carbide, SiC)是由碳原子和硅原子形成强共价键组成的四面体, 具有高硬度、高强度、高导热(490 W/(m·K))[9]以及良好的热稳定性等特点, 被广泛应用于热交换部件和电子基板等[10]。但是, 碳化硅陶瓷材料质地较脆, 对裂纹敏感, 难以独立使用[11]。纤维增强碳化硅陶瓷基复合材料是以纤维为增强体, 碳化硅为基体的陶瓷基复合材料 (Ceramic Matrix Composites, CMCs), 除具有碳化硅的优异性能外, 还兼具增强纤维轻质高强、耐腐蚀、抗老化等优点[12-13], 如碳化硅纤维增强碳化硅陶瓷基复合材料(SiCf/SiC)[14-17]、碳纤维增强碳化硅陶瓷基复合材料(Cf/SiC, C/C-SiC)[18-20]等。但是增强纤维石墨化程度较低, 石墨微晶尺寸较小, 热导率较低(碳化硅纤维热导率小于70 W/(m·K), 如表1所示[21]; 普通碳纤维热导率小于20 W/(m·K)[22]), 难以形成有效的导热通路。因此, 常见的碳化硅陶瓷基复合材料导热性能较差。

表1   碳化硅陶瓷纤维性能及产品[21]

Table 1  Properties and products of silicon carbide based fibers[21]

ProducerBrandModulus/GPaStrength/MPaDensity/(g·cm-3)Diameter/μmTC/(W·m-1·K-1)
NicalonNL20222030002.55142.97
Hi-Nicalon27028002.74127.77
Hi-Nicalon-S42026003.051218.4
TyrannoLox M18733002.48111.4
ZMI20034002.48112.5
SA38028003.1010/7.565
SylramicSylramic40028003.051040-45
Sylramic-iBN40032003.1010>46
KD[33]KD-A17021002.4312.3-
KD-B30030002.7611.2
KD-C32028002.8711.1

*Modulus is tensile modulus and TC is thermal conductivity of SiC-based fibers at room temperature

新窗口打开| 下载CSV


对于非金属晶体, 提高材料导热性能的关键在于增大声子平均自由程(Phonon mean free path), 减少由晶格振动引起的声子散射, 从而提高材料热输运效率[23-24]。目前, 提高碳化硅陶瓷基复合材料导热性能的手段主要有: 1)引入高导热相, 提高碳化硅陶瓷基复合材料热导率; 2)优化复合材料基体与增强体之间的界面, 减少界面热阻; 3)高温热处理促进碳化硅晶粒长大, 获得结晶度更高的导热相; 4)设计导热通路构筑有效的热输运网络。 制备的碳化硅陶瓷基复合材料具备优异的热物理性能, 成为潜在的新一代结构-功能一体化先进复合材料[4,25]

本文总结了热管理(Thermal Management, TM)用高导热碳化硅陶瓷基复合材料的制备工艺及其热物理性能相关研究工作, 结合目前研究现状, 展望了后续高性能碳化硅陶瓷基复合材料的发展方向。

1 引入高导热相提高热导率

对于碳化硅陶瓷基复合材料, 微米尺寸的碳化硅热导率大于纳米尺寸的, 可添加少量高导热材料补偿由于尺寸效应而导致热输运性质的损失[26], 如金刚石粉(Diamond powder, 热导率大于1500 W/(m·K)[27])、中间相沥青基碳纤维(Mesophase Pitch-based Carbon Fiber, MPCF, 热导率为500~ 1000 W/(m·K)[28])等。

目前, 对于高导热材料的划分尚未形成统一认识, 郭全贵等[29]认为, 隔热材料的热导率<1 W/(m·K); 1~50 W/(m·K)的材料导热性能较差; 50~200 W/(m·K)材料导热性能较好, 高导热材料热导率约200~ 400 W/(m·K), 超高导热材料的热导率>400 W/(m·K); 但Subhash等[30]认为热导率>100 W/(m·K)的材料为高导热材料。

1.1 高导热金刚石-碳化硅陶瓷基复合材料

金刚石(diamond)作为一种碳同素异形体, 碳-碳以强共价键结合, 非谐振动效应较弱, 声子散射的概率较低, 德拜温度较高(约2000 ℃), 在同样温度下, 具有超高的热导率(2000~2200 W/(m·K))[27]

Zhu等[31]研究了金刚石含量对于复合材料热导率的影响, 利用原位反应放电等离子烧结技术(In-situ Reactive Spark Plasma Sintering, SPS)制备了硅-金刚石-碳化硅复合材料(Si-diamond-SiC), 如图1所示。结果表明, 当金刚石体积分数为60%时, 复合材料热导率最高为392 W/(m·K), 其他复合材料的热导率在185~320 W/(m·K)之间。

图1

图1   不同金刚石的硅-金刚石-碳化硅复合材料显微组织及热导率[31]

Fig. 1   Microstructures and thermal conductivities of Si-diamond-SiC composites with different diamond volume contents[31]

(a) Si-20% diamond (sintered at 1523 K); (b) Si-60% diamond (sintered at 1643 K); (c) Fracture surface of (b); (d) EDX of(c); (e) XRD patterns of (a, b); (f) Experimental and theoretical thermal conductivity of Si-diamond-SiC composites


借助反应熔渗(Reactive Metal Infiltration, RMI)工艺, Zhang等[32]制备了金刚石体积分数为12%(RBSD1)、17%(RBSD2)、27%(RBSD3)、39%(RBSD4)的致密金刚石-碳化硅陶瓷基复合材料, 如图2所示。复合材料热导率与金刚石体积分数密切相关, 当金刚石体积分数从12%增加到39%时, 复合材料室温热导率从249 W/(m·K)提高到329 W/(m·K)。Thommy等[34]采用液相渗硅(Liquid Silicon Infiltration, LSI)或者硅合金工艺制备了高体积分数硅-金刚石-碳化硅复合材料(金刚石体积分数55%~79%, 碳化硅体积分数3%~36%, 硅或者硅合金体积分数4%~23%), 热导率在336~432 W/(m·K)范围。

图2

图2   不同体积分数的金刚石-碳化硅复合材料显微组织及热导率[32]

Fig. 2   Microstructures and thermal conductivities of diamond/SiC composites with different diamond volume contents[32]

(a) RBSD1; (b) RBSD2; (c) RBSD3; (d) RBSD4; (e) Diamond/SiC interface; (f) Graphite interlayer in diamond/SiC interfacial region; (g) TEM image of diamond/SiC interfacial region in post-annealing RBSD; (h) Thermal conductivities of RBSDs before and after high temperature annealing


Yang等[35]利用1600 ℃气相渗硅工艺(Vapor Silicon Infiltration, VSI) 制备了金刚石-碳化硅复合材料, 当金刚石体积分数为46%时, 复合材料热导率最高为562 W/(m·K); Zheng等[36]经1650 ℃气相渗硅, 制备了热导率为518 W/(m·K)的金刚石-碳化硅复合材料, 其热导率随着金刚石、碳化硅体积分数的增加而增大, 较大尺寸且表面粗糙的金刚石颗粒有利于硅蒸汽的附着沉积进而形成碳化硅; Yang等[37]研究了金刚石-碳化硅复合材料的反应熔渗机制, 认为熔融硅的爆炸蒸发, 固体体积膨胀以及反应过程中的热量释放是导致复合材料致密的关键因素, 制备的金刚石-碳化硅复合材料密度为3.33 g/cm3, 热导率为580 W/(m·K)。Matthey等[38]分别利用酚醛树脂(Phenol Formaldehyde Resin, PF)和纤维素(Cellulose)作为黏合剂, 与不同粒径的金刚石以及碳化硅粉混合后压制成坯, 最后经无压渗硅(Pressureless Silicon Infiltration)制备出热导率为500 W/(m·K)的高导热金刚石-碳化硅散热件。

金刚石-碳化硅陶瓷基复合材料可通过粉体的烧结工艺, 如放电等离子烧结[31], 或熔渗工艺, 如反应熔渗[32,34]和气相渗硅[35]等方法制备。然而, 致密的金刚石-碳化硅复合材料的制备工艺相当复杂[38], 通常会因烧结过程中硅与金刚石或者碳与硅的反应引起较大的尺寸变化[39], 且复合材料中含有较多未反应的游离硅。其中, 无压渗硅工艺可制备致密度较高、热物理性能优异的金刚石-碳化硅陶瓷基复合材料, 其游离硅的体积分数约为4%~5%, 可作为大型易损件的高效制备工艺。

1.2 高导热中间相沥青基碳纤维增强碳化硅陶瓷基复合材料

近年来, 国产高导热石墨纤维制备技术日臻成熟, 性能逐渐完善[40], 赋予高导热碳化硅陶瓷基复合材料更优的热物理性能以及更广阔的应用前景。

作为一种热塑性材料, 沥青是一种结构和化学组成非常复杂的物质, 通常由带有烷基侧链的稠环芳烃和杂环化合物混合而成[41]。原料沥青, 如石油沥青、煤沥青和萘系沥青等, 经调制改性处理可得到各向同性沥青或各向异性沥青, 再经熔融纺丝、均质预氧化、碳化、高温石墨化后得到沥青基碳纤维。按照原料, 沥青基碳纤维可分为各向同性沥青基碳纤维和中间相沥青基碳纤维(高性能沥青基碳纤维)[43]。其中, 中间相沥青基碳纤维(Mesophase Pitch-based Carbon Fiber, MPCF) 中含有大量向列型液晶相的芳烃平面大分子, 在纺丝时受剪切作用力或炭化过程中热作用下生成的碳质微晶, 可沿纤维轴向取向生长, 使中间相沥青基碳纤维较聚丙烯腈基碳纤维(Polyacrylonitrile Based Carbon Fiber)具有良好的热物理性质[42-43], 如表2所示。

表2   沥青基碳纤维性能及产品[42-43]

Table 2  Properties and products of pitch based carbon fibers[42-43]

ProducerBrandModulus/GPaStrength/MPaDensity/(g·cm-3)Diameter/μmTC/(W·m-1·K-1)
UCCP7551721002.0010185
P10075924102.1510520
P-12082824102.1810640
MitsubishiK-110093131002.2101000
K13D2U93537002.2110800
K13C2U90038002.210620
K63B1286026002.1510400
NipponGranoc92035302.197600
YS-95A
Granoc88035302.187500
YS-90A
NOCVARBNM6030-15≥550≥1500≥2.1-≥250
NM9050-20≥850≥2000≥2.15-≥450
NM9080-20≥850≥2000≥2.15-≥750
NMA080-25≥950≥2500≥2.15-≥750
TIANCE-TECHTC-HC-600-S75023002.2013600
ECO-500-9002500-35002.28-12500-800
TOYI-CARBENTYG-180023002.212600
TYG-290025002.212800

*Modulus is tensile modulus and TC is thermal conductivity of MPCF

新窗口打开| 下载CSV


纺丝过程中的纤维预氧化制度以及喷丝板结构造成了中间相沥青基碳纤维横截面不同[44]。Edie等[45]认为中间相沥青基碳纤维横截面主要有辐射状、洋葱皮状、乱层状、叠层状、放射褶皱结构、线型结构以及混合结构。其中, 辐射状结构具有良好的导热性能, 但皮部收缩程度比芯部剧烈, 容易产生裂纹, 力学性能降低; 洋葱皮状以及乱层状结构在热处理过程中收缩较均匀, 缺陷较少, 具有较高的拉伸强度; 放射褶皱状结构在具有较好力学性能的同时还兼具优良的导热性能; 而对于线型结构, 沥青熔体在更为充分的剪切力作用下, 具有更好的取向, 可避免热处理过程中的热应力集中和开裂现象, 使得纤维拉伸强度提高[46]。 因此, 可根据实际需要, 调控中间相沥青基碳纤维的横截面结构。

图3所示, Huang等[25]利用自研热导率800 W/(m·K)的中间相沥青基碳纤维(TYC-1, Toyi-Carbon)与高模量聚丙烯腈基碳纤维(M40J)编制成三维连续预制体, 经化学气相渗透(Chemical Vapor Infiltration, CVI)和高温石墨化处理, 再经聚合物浸渍裂解工艺(Polymer Impregnation Pyrolysis, PIP)制备得到热导率为221.1 W/(m·K)的三维高导热碳化硅陶瓷基复合材料(3D-C/C-SiC), 得益于其优异的高导热特性, 3D-C/C-SiC表现出较小的温度梯度以及优良的耐烧蚀性能(线烧蚀率为0.11 μm/s, 质量烧蚀率为0.56 mg/(cm2·s))。

图3

图3   3D HTC C/C-SiC制备工艺及微观组织[25]

Fig. 3   Diagram of fabrication and microstructure of the 3D HTC C/C-SiC composite[25]

(a) Fabrication process of 3D HTC C/C-SiC; (b-f) Microstructures of the 3D HTC C/C-SiC composite; (g) Interface energy spectrum diagram of the 3D HTC C/C-SiC; (h) Ablation tests and (i) temperature curves of the C/C-SiC


Fang等[47]研究了氧乙炔焰对高导热碳化硅陶瓷基复合材料的烧蚀机制。如图4所示, 升华是中心区域的主要消融行为, 氧化是中心区域的主要烧蚀行为; 硅的氧化以及氧化硅气体的沉积是外部区域形成二氧化硅颗粒的主要原因, 如图4(c)所示; 图4(a)中的中心区域烧蚀后, 由于增强纤维(M30, Japan) 的高导热性和相邻端升华速度的差异, 纤维形成了针状微结构。因此, 高导热碳化硅陶瓷基复合材料的氧乙炔焰烧蚀机理是热物理作用和热化学冲蚀的综合作用。

图4

图4   烧蚀后的碳纤维增强碳化硅陶瓷基复合材料表面形貌[47]

Fig. 4   Surface topographies of the as-ablated C/C-SiC[47]

(a) Image of the as-ablated C/C-SiC; (b-d) Magnification images of (b) middle region, (c) area “A” and (d) naked fibers in the center region of (a)


Cao等[48]利用600 W/(m·K)的中间相沥青基碳纤维(TC-HC-500), 酚醛树脂为碳源, 经化学气相沉积和反应熔渗工艺(如图5所示), 制备得到面内热导率为112.42 W/(m·K), 厚度热导率为38.89 W/(m·K)的高导热碳化硅陶瓷基复合材料。此外, 为探究反应熔渗温度对高导热碳化硅陶瓷基复合材料导热性质的影响, 通过控制反应熔渗过程中的气-液反应机制控制碳化硅晶须生长, 使1600 ℃反应熔渗制备的碳化硅陶瓷基复合材料面内热导率和厚度导热率进一步提高到203.00和39.59 W/(m·K)[49]

图5

图5   C/C-SiC复合材料制备工艺流程图[48]

Fig. 5   Flow diagram of preparation process of the C/C-SiC composite[48]


Guo等[50-51]以短切中间相沥青基碳纤维为增强体, 硼化锆、碳化硅、硼化铪等陶瓷粉末为基体, 利用热压工艺, 分别制备了热导率为104.7和93.8 W/(m·K)[51]的硼化锆-碳化硅陶瓷基复合材料和硼化铪-碳化硅陶瓷基复合材料, 复合材料热导率随着纤维体积分数增大而降低。

作为一种新型碳材料, 中间相沥青基碳纤维以其优良的热物理性能而得到广泛应用, 但其模量较高, 石墨化后质地较脆[25], 厚度方向需借助辅助工艺进行穿刺编排, 无法形成三维连续预制体。中间相沥青基碳纤维增强碳化硅陶瓷基复合材料特殊的几何结构特点, 使其性能各向异性[52]

2 界面优化降低界面热阻

固体和界面热传输的多尺度模拟表明, 声子输运主导的传热是多尺度的, 声子将与不同特征尺寸的结构相互作用而发生声子散射, 削弱材料的热输运能力, 如点缺陷、位错、层错、孪晶边界、孔隙以及各种微结构等[53]

Li等[54]采用化学气相沉积(Chemical Vapor Deposition, CVD)工艺在热解炭(Pyrolytic Carbon, PyC)表面沉积碳纳米管(Carbon Nanotubes, CNTs)用于改善热解炭基体与碳化硅的界面结合, 结果表明, 800 ℃沉积20 min, 使用体积分数为15%的乙烯气体沉积的碳纳米管增强碳化硅陶瓷基复合材料的性能最好(抗弯强度466 MPa, 热导率17.2 W/(m·K))。

Cui等[55]通过化学气相渗透工艺在热解炭表面原位生长碳化硅纳米线(Silicon Carbide Nanowires, SiCNWS)用于改善聚合物浸渍裂解(Polymer Impregnation Pyrolysis, PIP)制备的三维碳化硅纤维增强碳化硅陶瓷基复合材料的力学特性和热导率, 结果表明沉积碳化硅纳米线的复合材料抗弯强度和热导率(最高4.46 W/(m·K))分别提高了46%和43%。

Li等[56]研究了酚醛树脂含量对化学气相渗透(Chemical Vapor Infiltration, CVI)和反应熔渗制备碳纤维增强金刚石-碳化硅复合材料的微观结构和导热性能的影响, 结果表明, 酚醛树脂含量显著影响反应熔体渗透前复合材料孔隙结构以及反应熔渗后基体的相组成和密度, 酚醛树脂含量较高时, 无定形碳(Amorphous Carbon, a-C)的含量增加, 金刚石与无定形碳的非晶态界面区域增加, 界面结合较差, 导致复合材料的界面热阻增加, 从而降低复合材料热导率。

图6所示, Feng等[57]通过电泳沉积(Electrophoretic Deposition)法将碳纳米管(CNTs)沉积到碳化硅纤维表面形成碳纳米管-热解炭(CNTs-PyC)界面, 改善了原始热解炭(PyC)界面的均匀性和结构, 导致界面处部分短石墨烯条纹定向取向, 而长石墨烯条纹高度弯曲(如图6(f)所示), 使碳化硅纤维增强碳化硅陶瓷基复合材料抗弯强度从430 MPa提高到505 MPa, 热导率从8.2 W/(m·K) 提高到17.7 W/(m·K)。

图6

图6   碳化硅纤维表面电泳沉积碳纳米管微观组织及复合材料热物理性能[57]

Fig. 6   Microstructures of SiC fiber with electrodeposited CNTs and thermophysical properties of SiCf/SiC compersites[57]

(a) Surface of SiC fibers with CNTs; (b) Surface of SiC fibers without CNTs; (c) Interface between CNTs and PyC; (d) TEM image of PyC deposited on CNTs; (e, f) HRTEM images of PyC deposited on (e) SiC fibers and (f) CNTs; (g) Bending strength and (h) thermal conductivity of SiC/SiC composites with different interfaces


3 高温热处理影响热导率

改善碳化硅陶瓷基复合材料的密度和晶粒尺寸可以进一步提高复合材料的性能。具有较高密度的碳化硅陶瓷基复合材料往往具有较高的热导率, 而细化碳化硅晶粒将降低其热导率[4]。一方面, 可通过热处理促进碳化硅晶粒长大, 获得更高结晶度的碳化硅, 进而提高复合材料的热导率; 另一方面, 随着热处理的进行, 碳化硅基体与热解炭的非晶态界面区域增加, 进而降低复合材料的热导率。

Cao等[48]探究了热处理温度对中间相沥青基碳纤维增强碳化硅陶瓷基复合材料热导率的影响, 对制备得到的复合材料进行热处理(1650 ℃-2 h), 如图7所示, 复合材料面内热导率从112.42提高到142.49 W/(m·K), 厚度热导率从38.89提高到43.49 W/(m·K)。

图7

图7   Cpf/SiC复合材料(1600 ℃-2 h)热处理(a)前(b)后的热导率[48]

Fig. 7   Thermal conductivities of Cpf/SiC composites (a) before and (b) after heat-treatment(1600 ℃-2 h)[48]


Zhang等[32]对反应熔渗制备的高体积分数的金刚石-碳化硅陶瓷基复合材料(金刚石体积分数为39%)进行1600 ℃-1.5 h的高温热处理, 热导率较未处理前降低了15 W/(m·K), 这是由于经高温热处理后, 金刚石-碳化硅界面厚度有所增加(如图2(g)所示), 界面热阻增大, 从而降低复合材料的热导率。

Zhang等[58]研究了金刚石颗粒增强碳化硅复合材料界面结构及其形成机理。如图8所示, 在界面区域的金刚石颗粒周围有一层薄薄的石墨层, 可能是在反应熔渗(Reactive Metal Infiltration, RMI)制备碳化硅陶瓷基复合材料的过程中, 金刚石石墨化以及无定形碳的转化形成的。研究表明, 碳的溶解和饱和过程是复合材料界面附近伴有大量层错纳米碳化硅晶体形成的主要机制, 揭示了随着热处理温度升高, 界面热阻增加和复合材料热导率下降的原因[58]

图8

图8   金刚石/SiC复合材料界面区域表征[58]

Fig. 8   Characterization of diamond/SiC interfacial zone[58]

(a) TEM image of diamond and SiC separated by a layer of graphite with lighter contrast; (b) HRTEM image of the rectangular region in (a) showing the graphite (G) and diamond (D) zones; (c-e) TEM and HRTEM images of (c, d) graphite layer and (e) reaction formed nano-crystalline SiC with stacking faults; (f) TEM image of Al4C3 formed adjacent to the interface; (g) HRTEM image from the rectangular region in (f); (h) ADF STEM of diamond/SiC interfacial area in (f)


图9所示, Feng等[59]研究了热处理温度对化学气相渗透制备的二维碳化硅纤维增强碳化硅陶瓷基复合材料导热性能的影响。1900 ℃热处理的碳化硅陶瓷基复合材料的热导率是未经热处理的14倍, 最高达138.4 W/(m·K), 说明热处理促进了碳化硅晶体长大, 改善了碳化硅纤维的结晶度以及纤维与基体之间的界面结合, 从而提高了碳化硅陶瓷基复合材料的热导率。

图9

图9   不同温度热处理的SiCf/SiC复合材料微观组织及热导率[59]

Fig. 9   Microstructures and thermal conductivities of SiCf/SiC composites with different heat-treatment[59]

(a) SiC matrix without heat-treatment; (b) SiC matrix with 1700 ℃-2 h heat-treatment; (c) SiC matrix with 1900 ℃-2 h heat-treatment; (d-f) TEM images of SiC matrix corresponding to (a-c); (g) Thermal conductivity of 2D SiCf/SiC after different heat-treatments; (h) Full width at half maximum of (111) diffraction crystal plane after different heat-treatments


高温热处理可促进碳化硅晶体发育, 提高结晶度, 减少晶体缺陷带来的声子散射, 从而提高复合材料的热导率。同时, 随着热处理温度升高, 复合材料界面区域增大, 尤其是碳化硅与含无定形碳的界面区域发生石墨化转变, 将增大界面热阻, 降低复合材料热导率。

4 结构设计提高热导率

由于纤维预制体的结构特点, 纤维增强碳化硅陶瓷基复合材料沿厚度方向, 碳纤维与基体之间结合较弱, 热输运能力较面内方向弱, 面内热导率约是沿厚度热导率的10~100倍[60], 热导率各向异性。

研究者围绕高导热填料的均匀分散以及如何构建连续有效的导热通路, 进行了诸多探索。

Zhang等[61]首先采用化学气相渗透工艺制备出二维碳纤维增强碳化硅陶瓷基复合材料, 厚度方向经连续微波激光(Continuous Wave Laser)打孔后, 注射多层石墨烯溶液用以构筑厚度方向连续导热通道, 最后经化学气相渗透工艺增密(如图10所示), 使碳纤维增强碳化硅陶瓷基复合材料的热导率提高了204%, 为设计、制备连续纤维增强高导热碳化硅陶瓷基复合材料提供了一种新的有效方法。

图10

图10   含石墨烯-碳纤维增强碳化硅陶瓷基复合材料导热通路设计[61]

Fig. 10   Design of heat conductive channels of Cf/SiC with well-designed graphene[61]


Zhang等[62]利用热导率为500 W/(m·K)的中间相沥青基碳纤维织物, 正交铺排堆垛后构建二维连续预制体, 然后经化学气相渗透沉积热解炭基体和碳化硅, 厚度方向辅之激光打孔以垂直排列高导热纤维束, 最后利用化学气相渗透工艺制备高导热碳化硅陶瓷基复合材料, 如图11所示。制备的碳化硅陶瓷基复合材料面内热导率为150.2 W/(m·K), 厚度热导率达到46.7 W/(m·K), 主要得益于高导热中间相沥青基碳纤维连续预制体的结构设计, 使得面内方向形成连续导热通路, 厚度方向高导热纤维束垂直排列, 形成有效的热输运网络。

图11

图11   含微管道的三维高导热碳纤维增强碳化硅陶瓷基复合材料结构设计[62]

Fig. 11   Structural design of three-dimensional-linked Cf/SiC with micro-pipelines[62]


Chen等[52]通过在碳纤维表面分层生长垂直排列的碳纳米管(CNTs), 如图12所示, 堆垛以形成三维预制体结构, 然后经聚合物浸渍裂解工艺制备得到碳化硅陶瓷基复合材料, 其厚度热导率从7.94 W/(m·K)提高到16.80 W/(m·K)。

图12

图12   生长30 min的 (a, b) ECNT-CF和(c, d) VACNT-CF不同放大倍率的微观组织[52]

Fig. 12   Low and high magnification SEM images of (a, b) ECNT-CF and (c, d) VACNT-CF fabrics with a growth duration of 30 min[52]


Pan等[63]首先采用化学气相渗透工艺制备二维碳纤维增强碳化硅复合材料, 厚度方向通过激光打孔定向引入高导热碳纳米管以构建三维连续导热通路, 如图13所示, 最后经化学气相渗透增密后得到三维高导热碳化硅陶瓷基复合材料。改进后的复合材料的厚度热导率达到150.42 W/(m·K), 约为改进前的25倍。

图13

图13   定向碳纳米管-碳纤维增强碳化硅陶瓷基复合材料结构设计[63]

Fig. 13   Structure design of the Cf/SiC with aligned carbon nanotube[63]


Zhang等[64]为了提高化学气相渗透工艺制备碳纤维增强碳化硅陶瓷基复合材料的厚度热导率, 利用激光加工微孔技术, 使中间相沥青基碳纤维束沿厚度方向均匀排列以构建连续的导热通路。结果表明, 经结构设计的复合材料热导率约为初始结构的340%。

Huang等[25]利用高导热中间相沥青基碳纤维(TYC-1, Toyi Carbon, 800 W/(m·K))面内方向沿0°和90°正交编制, 利用高模量聚丙烯腈基碳纤维(Toray, M40J)沿厚度方向针刺, 搭建三维连续导热通路, 如图3所示, 制备得到的碳化硅陶瓷基复合材料面内热导率达221.1 W/(m·K), 但厚度方向纤维难以形成有效的导热网络, 使复合材料的厚度热导率小于20 W/(m·K)。

Cao等[48]将热导率为600 W/(m·K)的中间相沥青基碳纤维沿0°和90°正交铺排后, 厚度方向采用激光钻孔以垂直排布高导热纤维束, 如图5所示, 制备得到面内热导率为142.49 W/(m·K), 厚度热导率为43.49 W/(m·K)的高导热碳化硅陶瓷基复合材料。

Snead等[65]利用两种高导热沥青基碳纤维(P55, 热导率约为120 W/(m·K); K-1100, 热导率约为1000 W/(m·K))设计出一种三维混杂纤维预制体[66] (3D-hybrid fiber preforms), 而后经化学气相沉积碳化硅基体增密, 得到热导率为214 W/(m·K)的高导热混杂纤维增强碳化硅陶瓷基复合材料(Hybrid 3D-C/C-SiC), 为纤维预制体结构设计提高陶瓷基复合材料热导率提供了一种新思路。

综上所述, 借助巧妙的辅助工艺, 可有效改善连续纤维增强复合材料厚度方向的热输运能力, 明显减少因纤维预制体几何结构特点造成的高导热碳化硅陶瓷基复合材料应用瓶颈。值得注意的是, 连续纤维增强碳化硅陶瓷基复合材料的厚度热导率较面内热导率仍然存在数量级的差异。这可能是在结构设计过程中, 厚度方向的增强体纤维与基体之间的界面结合较差难以形成贯穿的导热通路, 孔隙等结构缺陷引起的界面热阻较高等原因造成的。

5 总结与展望

高效传热和高温耐热相结合是高导热碳化硅陶瓷基复合材料在热管理领域应用的关键。本文综述了高导热碳化硅陶瓷基复合材料的最新研究成果, 详细分析了高导热碳化硅陶瓷基复合材料制备工艺及导热作用机理。围绕目前的研究内容, 后续可持续关注以下几个方面:

1)适当引入高导热相以期制备各向同性碳化硅陶瓷基复合材料。综合考虑增强体形态、尺寸、含量、分布等对碳化硅陶瓷基复合材料性能的影响, 探索制备高致密、低孔隙、各向同性高导热碳化硅陶瓷基复合材料是实现高效传热的基础。

2)合理调控碳化硅基体与增强体界面。非晶态界面区域、均匀性以及结构影响声子热输运能力。设计、优化碳化硅基体与增强体界面相容性是降低边界声子散射效应, 提高碳化硅陶瓷基复合材料热导率的途径。

3)深入分析碳化硅陶瓷基复合材料高温热处理机理。一方面, 高温热处理可促进碳化硅晶体发育, 提高热导率; 另一方面, 碳化硅陶瓷基复合材料非晶体界面区域的石墨化转变, 碳的饱和及溶解过程是工艺优化、组织调控、制备高导热碳化硅陶瓷基复合材料的核心。

4)结构设计构筑三维贯穿有效导热通路。增强纤维沿厚度方向与基体结合较弱, 导致纤维增强复合材料热物理性能各向异性。因此, 探索高导热碳化硅陶瓷基复合材料构效关系, 构筑三维贯穿导热通路是设计、制备、加工结构-功能一体化先进陶瓷基复合材料的关键。

参考文献

PARTHASARATHY T A, PETRY M D, CINIBULK M K, et al.

Thermal and oxidation response of UHTC leading edge samples exposed to simulated hypersonic flight conditions

Journal of the American Ceramic Society, 2013, 96(3):907.

DOI      URL     [本文引用: 1]

UYANNA O, NAJAFI H.

Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects

Acta Astronautica, 2020, 176: 341.

DOI      URL     [本文引用: 1]

NOZAWA T, HINOKI T, HASEGAWA A, et al.

Recent advances and issues in development of silicon carbide composites for fusion applications

Journal of Nuclear Materials, 2009, 386-388: 622.

DOI      URL     [本文引用: 1]

YAO X M, WANG X J, LIU X J, et al.

Friction-wear properties and mechanism of hard facing pairs of SiC and WC.

Journal of Inorganic Materials, 2019, 34(6):673.

DOI      URL     [本文引用: 3]

肖鹏, 熊翔, 张红波, .

C/C-SiC陶瓷制动材料的研究现状与应用

中国有色金属学报, 2005, 15(5):667.

[本文引用: 1]

KRENKEL W, BERNDT F.

C/C-SiC composites for space applications and advanced friction systems

Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2005, 412(1/2):177.

DOI      URL     [本文引用: 1]

LUO L, WANG Y G, LIU L P, et al.

Carbon fiber reinforced silicon carbide composite-based sharp leading edges in high enthalpy plasma flows

Composites Part B-Engineering, 2018, 135: 35.

DOI      URL     [本文引用: 1]

WANG X, GAO X, ZHANG Z, et al.

Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: a focused review

Journal of the European Ceramic Society, 2021, 41(9):4671.

DOI      URL     [本文引用: 1]

SLACK G A.

Thermal conductivity of pure and impure silicon, silicon carbide, and diamond

Journal of Applied Physics, 1964, 35(12):3460.

DOI      URL     [本文引用: 1]

ZHOU Y, HIRAO K, WATARI K, et al.

Thermal conductivity of silicon carbide densified with rare-earth oxide additives

Journal of the European Ceramic Society, 2004, 24(2):265.

DOI      URL     [本文引用: 1]

AN Q L, CHEN J, MING W W, et al.

Machining of SiC ceramic matrix composites: a review

Chinese Journal of Aeronautics, 2021, 34(4):540.

DOI      URL     [本文引用: 1]

EOM J H, KIM Y W, SONG I H.

Effects of the initial α-SiC content on the microstructure, mechanical properties, and permeability of macroporous silicon carbide ceramics

Journal of the European Ceramic Society, 2012, 32(6):1283.

DOI      URL     [本文引用: 1]

张立同, 成来飞, 徐永东.

新型碳化硅陶瓷基复合材料的研究进展

航空制造技术, 2003(1): 24.

[本文引用: 1]

YUAN Q, SONG Y C.

Research and development of continuous SiC fibers and SiCf/SiC composities

Journal of Inorganic Materials, 2016, 31(11):1157.

DOI      [本文引用: 1]

Polymer-derived method is the main preparation method for continuous SiC fiber. So far, three generations of SiC-based fibers have been developed. SiC fiber is mainly used as reinforcement for SiC matrix to prepare SiCf/SiC composite, which exhibits excellent properties such as high-temperature resistance, oxidation resistance, high-temperature creep resistance, and neutron radiation stability. Therefore, it is considered as a promising preferred alternative material for structural components which works under harsh environments. In this review, the domestic and oversea development of the polymer-derived SiC fibers are introduced, in particular the different approaches for preparation and the characteristics of the 3rd generation fibers. Then, the development of SiCf/SiC preparation technology and properties are reviewed and the relationship between the innovation in fabrication of SiCf/SiC composite and the development of SiC fiber is hightlighted. Finally, the application progress of SiCf/SiC composite in high performance aero-engines and fusion power cores is summerized. Meanwhile, some perspectives on the development of domestic SiC fibers and SiCf/SiC are also discussed.

LIU G, ZHANG X, YANG J, et al.

Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior

Journal of Advanced Ceramics, 2019, 8(1):19.

DOI      [本文引用: 1]

KATOH Y, OZAWA K, SHIH C, et al.

Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects

Journal of Nuclear Materials, 2014, 448(1/2/3):448.

DOI      URL     [本文引用: 1]

XU Y D, CHENG L F, ZHANG L T.

Three dimensional textile SiC/SiC composites by chemical vapor infiltration

Journal of Inorganic Materials, 2001, 16(2):344.

[本文引用: 1]

LIU W, WEI Y, DENG J.

Carbon-fiber-reinforced C-SiC binary matrix composites

Carbon, 1995, 33(4):441.

DOI      URL     [本文引用: 1]

HU C L, HONG W H, XU X J, et al.

Sandwich-structured C/C-SiC composites fabricated by electromagnetic-coupling chemical vapor infiltration

Scientific Reports, 2017, 7: 13120.

DOI      PMID      [本文引用: 1]

Carbon fiber (CF) reinforced carbon-silicon carbide (C/C-SiC) composites are one of the most promising lightweight materials for re-entry thermal protection, rocket nozzles and brake discs applications. In this paper, a novel sandwich-structured C/C-SiC composite, containing two exterior C/SiC layers, two gradient C/C-SiC layers and a C/C core, has been designed and fabricated by two-step electromagnetic-coupling chemical vapor infiltration (E-CVI) for a 20-hour deposition time. The cross-section morphologies, interface microstructures and SiC-matrix growth characteristics and compositions of the composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. Microstructure characterization indicates that the SiC growth includes an initial amorphous SiC zone, a gradual crystallization of SiC and grow-up of nano-crystal, and a columnar grain region. The sandwich structure, rapid deposition rate and growth characteristics are attributed to the formation of thermal gradient and the establishment of electromagnetic field in the E-CVI process. The composite possesses low density of 1.84 g/cm(3), high flexural strength of 325 MPa, and low linear ablation rate of 0.38 mu m/s under exposure to 5-cycle oxyacetylene flame for 1000 s at similar to 1700 degrees C.

STALIN M, RAJAGURU K, RANGARAJ L.

Processing of Cf/SiC composites by hot pressing using polymer binders followed by polymer impregnation and pyrolysis

Journal of the European Ceramic Society, 2020, 40(2):290.

DOI      URL     [本文引用: 1]

OKAMURA K, SHIMOO T, SUZUYA K, et al.

SiC-based ceramic fibers prepared via organic-to-inorganic conversion process-a review

Journal of the Ceramic Society of Japan, 2006, 114(6):445.

DOI      URL     [本文引用: 3]

张建可.

树脂基碳纤维复合材料的热物理性能之一——导热系数

中国空间科学技术, 1987, (3):55.

[本文引用: 1]

MARADUDIN A A.

The lattice thermal conductivity of an isotopically isordered crystal

Journal of the American Chemical Society, 1964, 86(17):3405.

DOI      URL     [本文引用: 1]

NI Y, XIONG S, VOLZ S, et al.

Thermal transport along the dislocation line in silicon carbide

Physical Review Letters, 2014, 113(12):124301.

DOI      URL     [本文引用: 1]

HUANG D, TAN R X, LIU L, et al.

Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon- silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels

Journal of the European Ceramic Society, 2021, 41(8):4438.

DOI      URL     [本文引用: 6]

SNEAD L L, NOZAWA T, KATOH Y, et al.

Handbook of SiC properties for fuel performance modeling

Journal of Nuclear Materials, 2007, 371(1/2/3):329.

[本文引用: 1]

GRAEBNER J E. Thermal Conductivity of Diamond. In: PAN L S, KANIA D R. Boston, Diamond:Electronic Properties and Applications. MA: Springer US, 1995: 285.

[本文引用: 2]

YE C, WU H, ZHU S P, et al.

Microstructure of high thermal conductivity mesophase pitch-based carbon fibers

New Carbon Materials, 2021, 36(5):980.

DOI      URL     [本文引用: 1]

高晓晴, 郭全贵, 刘朗, .

高导热炭材料的研究进展

功能材料, 2006(2): 173.

[本文引用: 1]

DONALD T M, GLEN A S. Conductivity of single crystals. In SHINDE S L, GOELA J S. High thermal conductivity materials. New York: Springer, 2006: 21.

[本文引用: 1]

ZHU C X, LANG J, MA N G.

Preparation of Si-diamond-SiC composites by in-situ reactive sintering and their thermal properties

Ceramics International, 2012, 38(8):6131.

DOI      URL     [本文引用: 4]

ZHANG Y Y, WANG T S, HSU C Y, et al.

Thermal transport characteristics in diamond/SiC composites via molten Si infiltration

Ceramics International, 2021, 47(12):17084.

DOI      URL     [本文引用: 5]

李亮.碳化硅纤维高温氧化行为研究. 长沙: 国防科学技术大学硕士学位论文, 2016.

[本文引用: 1]

EKSTROM T, ZHENG J, KLOUB K, et al.

Heat conductive material

United States, Grant, 6914025. 2005.07.05.

[本文引用: 2]

YANG Z L, HE X B, WU M, et al.

Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration

Ceramics International, 2013, 39(3):3399.

DOI      URL     [本文引用: 2]

ZHENG W, HE X B, WU M, et al.

Preparation and thermal conductivities of diamond/SiC composites

Applied Physics A-Materials Science & Processing, 2018, 124(12):804.

[本文引用: 1]

YANG Z L, HE X B, WU M, et al.

Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process

Journal of the European Ceramic Society, 2013, 33(4):869.

DOI      URL     [本文引用: 1]

MATTHEY B, KUNZE S, HORNER M, et al.

SiC-bonded diamond materials produced by pressureless silicon infiltration

Journal of Materials Research, 2017, 32(17):3362.

DOI      URL     [本文引用: 2]

\n \n

SHIMONO M, KUME S.

HIP-sintered composites of C (Diamond)/ SiC.

Journal of the American Ceramic Society, 2004, 87(4):752.

DOI      URL     [本文引用: 1]

李子晗.

中间相沥青基碳纤维复合材料研究进展及发展前景

新型工业化, 2022, 12(8):174.

[本文引用: 1]

宁亮.

中间相沥青基碳纤维的制备及其表面处理的研究

北京: 北京化工大学硕士学位论文, 2009.

[本文引用: 1]

毛德君.

沥青基碳纤维的生产及应用

炼油与化工, 2002, 13(4):3.

[本文引用: 3]

徐兵.

高导热沥青基炭纤维的制备及其在三维炭/炭复合材料中的应用研究

武汉: 武汉科技大学博士学位论文, 2018.

[本文引用: 4]

CALEBRESE C, EISMAN G A, LEWIS D J, et al.

Swelling and related mechanical and physical properties of carbon nanofiber filled mesophase pitch for use as a bipolar plate material

Carbon, 2010, 48(13):3939.

DOI      URL     [本文引用: 1]

EDIE D D, FOX N K, BARNETT B C, et al.

Melt-spun non-circular carbon fibers

Carbon, 1986, 24(4):477.

DOI      URL     [本文引用: 1]

YOON S H, KORAI Y, MOCHIA I, et al.

Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch

Carbon, 1996, 34(1):83.

DOI      URL     [本文引用: 1]

FANG D, CHEN Z, SONG Y, et al.

Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch

Ceramics International, 2009, 35: 1249.

DOI      URL     [本文引用: 3]

CAO L Y, WANG J, LIU Y S, et al.

Effect of heat transfer channels on thermal conductivity of silicon carbide composites reinforced with pitch-based carbon fibers

Journal of the European Ceramic Society, 2022, 42(2):420.

DOI      URL     [本文引用: 7]

CAO L Y, LIU Y S, ZHANG Y H, et al.

Thermal conductivity and bending strength of SiC composites reinforced by pitch-based carbon fibers

Journal of Advanced Ceramics, 2022, 11(2):247.

DOI      [本文引用: 1]

In this work, pitch-based carbon fibers were utilized to reinforce silicon carbide (SiC) composites via reaction melting infiltration (RMI) method by controlling the reaction temperature and resin carbon content. Thermal conductivities and bending strengths of composites obtained under different preparation conditions were characterized by various analytical methods. Results showed the formation of SiC whiskers (SiCw) during RMI process according to vapor—solid (VS) mechanism. SiCw played an important role in toughening the Cpf/SiC composites due to crack bridging, crack deflection, and SiCw pull-out. Increase in reaction temperature during RMI process led to an initial increase in thermal conductivity along in-plane and thickness directions of composites, followed by a decline. At reaction temperature of 1600 °C, thermal conductivities along the in-plane and thickness directions were estimated to be 203.00 and 39.59 W/(m·K), respectively. Under these conditions, bending strength was recorded as 186.15±3.95 MPa. Increase in resin carbon content before RMI process led to the generation of more SiC matrix. Thermal conductivities along in-plane and thickness directions remained stable with desirable values of 175.79 and 38.86 W/(m·K), respectively. By comparison, optimal bending strength improved to 244.62±3.07 MPa. In sum, these findings look promising for future application of pitch-based carbon fibers for reinforcement of SiC ceramic composites.

GUO S Q.

Thermal and electrical properties of hot-pressed short pitch-based carbon fiber-reinforced ZrB2-SiC matrix composites

Ceramics International, 2013, 39(5):5733.

DOI      URL     [本文引用: 1]

GUO S Q, NAITO K, KAGAWA Y.

Mechanical and physical behaviors of short pitch-based carbon fiber-reinforced HfB2-SiC matrix composites

Ceramics International, 2013, 39(2):1567.

DOI      URL     [本文引用: 2]

CHEN S, FENG Y, QIN M, et al.

Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes

Carbon, 2017, 116: 84.

DOI      URL     [本文引用: 4]

HU M, YANG Z H.

Perspective on multi-scale simulation of thermal transport in solids and interfaces

Physical Chemistry Chemical Physics, 2021, 23(9):5680.

DOI      URL     [本文引用: 1]

LI Z X, LI X Q, ZHANG B X, et al.

Enhanced thermal and mechanical properties of optimized SiCf/SiC composites with in-situ CNTs on PyC interface

Ceramics International, 2020, 46(11):18071.

DOI      URL     [本文引用: 1]

CUI G Y, LUO R Y, WANG L Y, et al.

Effect of SiC nanowires on the mechanical properties and thermal conductivity of 3D-SiCf/SiC composites prepared via precursor infiltration pyrolysis

Journal of the European Ceramic Society, 2021, 41(10):5026.

DOI      URL     [本文引用: 1]

LI J X, LIU Y S, CHEN C, et al.

Effects of phenolic resin contents on microstructures and properties of C/SiC-diamond composites

Journal of the American Ceramic Society, 2021, 104(7):3424.

DOI      URL     [本文引用: 1]

FENG W, ZHANG L T, LIU Y S, et al.

The improvement in the mechanical and thermal properties of SiC/SiC composites by introducing CNTs into the PyC interface

Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 637: 123.

DOI      URL     [本文引用: 3]

ZHANG Y Y, HSU C Y, KARANDIKAR P, et al.

Interfacial zone surrounding the diamond in reaction bonded diamond/SiC composites: Interphase structure and formation mechanism

Journal of the European Ceramic Society, 2019, 39(16):5190.

DOI      URL     [本文引用: 4]

FENG W, ZHANG L T, LIU Y S, et al.

Increasing the thermal conductivity of 2D SiC/SiC composites by heat-treatment

Fusion Engineering and Design, 2015, 90: 110.

DOI      URL     [本文引用: 3]

HAN S, LIN J T, YAMADA Y, et al.

Enhancing the thermal conductivity and compressive modulus of carbon fiber polymer-matrix composites in the through-thickness direction by nanostructuring the interlaminar interface with carbon black

Carbon, 2008, 46(7):1060.

DOI      URL     [本文引用: 1]

ZHANG Y H, LIU Y S, CAO Y J, et al.

Effect of well-designed graphene heat conductive channel on the thermal conductivity of C/SiC composites

Ceramics International, 2021, 47(13):19115.

DOI      URL     [本文引用: 3]

ZHANG Y H, LIU Y S, CAO L Y, et al.

Three-dimensional micro-pipelines high thermal conductive C/SiC composites

Ceramics International, 2021, 47(24):34333.

DOI      URL     [本文引用: 3]

PAN Y, WANG J, WANG N, et al.

Effects of aligned carbon nanotube microcolumns on mechanical and thermal properties of C/SiC composites prepared by LA-CVI methods

Journal of the European Ceramic Society, 2019, 39(16):5463.

DOI      URL     [本文引用: 3]

ZHANG Y H, LIU Y S, CAO Y J, et al.

Effect of initial density on thermal conductivity of new micro-pipeline heat conduction C/SiC composites

Journal of the American Ceramic Society, 2021, 104(1):645.

DOI      URL     [本文引用: 1]

SNEAD L L, SCHWARZ O J.

Advanced SiC composites for fusion applications

Journal of Nuclear Materials, 1995, 219: 3.

DOI      URL     [本文引用: 1]

NASLAIN R.

Hybrid ceramic matrix fibrous composites:an overview

IOP Conference Series: Materials Science and Engineering, 2011, 18: 082002.

[本文引用: 1]

/