无机材料学报, 2023, 38(3): 256-269 DOI: 10.15541/jim20220647

综述

多尺度晶体材料的原位表征技术与计算模拟研究进展

陈昆峰,1, 胡乾宇1, 刘锋2, 薛冬峰,2

1.山东大学 新一代半导体材料研究院 晶体材料国家重点实验室, 济南 250100

2.中国科学院 深圳先进技术研究院, 多尺度晶体材料研究中心, 深圳 518055

Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations

CHEN Kunfeng,1, HU Qianyu1, LIU Feng2, XUE Dongfeng,2

1. State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China

2. Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

通讯作者: 薛冬峰, 研究员. E-mail:df.xue@siat.ac.cn

收稿日期: 2022-11-1   修回日期: 2022-12-20   网络出版日期: 2023-01-19

基金资助: 国家自然科学基金(51832007)
国家自然科学基金(52220105010)
国家自然科学基金(52202012)
山东省自然科学基金重大基础研究项目(ZR2020ZD35)
山东大学齐鲁青年学者项目

Corresponding authors: XUE Dongfeng, professor. E-mail:df.xue@siat.ac.cn

Received: 2022-11-1   Revised: 2022-12-20   Online: 2023-01-19

Fund supported: National Natural Science Foundation of China(51832007)
National Natural Science Foundation of China(52220105010)
National Natural Science Foundation of China(52202012)
Natural Science Foundation of Shandong Province(ZR2020ZD35)
Qilu Young Scholars Program of Shandong University

作者简介 About authors

陈昆峰(1987-), 教授. E-mail: kunfeng.chen@sdu.edu.cn

CHEN Kunfeng(1987-), professor. E-mail: kunfeng.chen@sdu.edu.cn

摘要

大尺寸晶体材料是半导体、激光、通讯等领域的基础原料, 大尺寸、高品质晶体材料的制备已成为制约相关行业发展的瓶颈。我国面临的“卡脖子”技术中大多与关键基础材料相关。大尺寸晶体材料制备理论与技术是我国新材料产业高质量发展的一个重要方面, 也是提升相应高技术产业的基础, 突破大尺寸晶体材料的制备理论和技术是获得高品质大尺寸晶体材料的关键。探究并准确理解大尺寸晶体生长机理需要借助原位表征技术和多尺度计算模拟方法。单一的原位表征和模拟技术只能探究特定时间和空间范围内的结晶信息, 为了准确反映结晶过程需要综合应用多种方法。本文综述了最新的多尺度晶体生长研究的原位表征方法、多尺度计算模拟技术以及机器学习方法, 为发展结晶理论和控制晶体品质提供重要的实验和理论依据, 并将为提升大尺寸晶体生长工艺的开发而服务。

关键词: 晶体生长; 多尺度结晶; 振动光谱; 原位观测; 多尺度模拟计算; 综述

Abstract

Large-sized crystalline materials are the basic raw materials in semiconductors, lasers, and communications. Preparation of large-scale, high-quality crystalline materials has become a bottleneck restricting the development of related industries. Breaking through the preparation theory and technology of large-sized crystal materials is the key to obtaining high-quality large-sized crystals. Preparation process of crystal materials often undergoes nucleation and growth stages, including multiple processes at spatiotemporal scale: from atom/molecules, through clusters and nuclei, to bulk crystals. To further explore and accurately understand the crystal growth mechanism, we need intensively study the multiscale process,multi-scale in situ characterization techniques, and computational simulation methods. Among them, the latest in situ characterization methods for crystal growth includes optical microscopy, electron microscopy, vibration spectra, synchrotron radiation, neutron technology, and especially, machine learning method. Thus, the multi-scale computational simulation techniques for crystallization is introduced, for example, first principles calculation at atom/molecular scale, molecular dynamics simulation, Monte Carlo simulation, phase field simulation at mesoscopic scale, and finite element simulation at macroscopic scale. A single in situ characterization or simulation technique can only explore crystallization information over a specific time and space scale. To accurately and fully reflect the crystallization process, a combination of multi-scale methods is introduced. It can be speculated that the establishment of in situ characterization technology and computational simulation methods for the actual large-sized crystal growth environment will be the future development trend, which provides an important experimental and theoretical basis for developing crystallization theory and controlling crystal quality. Furthermore, it can be deduced that the combination of in situ characterization technology with machine learning and big data technology will be the trend for large-sized crystal growth.

Keywords: crystal growth; multi-scale crystallization; vibration spectra; in situ characterization; multi-scale simulations; review

PDF (10790KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展. 无机材料学报, 2023, 38(3): 256-269 DOI:10.15541/jim20220647

CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations. Journal of Inorganic Materials, 2023, 38(3): 256-269 DOI:10.15541/jim20220647

晶体材料已广泛应用于能源、环境、信息、医疗、军事等领域, 在人类社会发展中起着举足轻重的作用[1]。我国人工晶体材料的研究开创于20世纪50年代中期, 经历从无到有、从实验室研发到大规模产业化, 进展相当迅速[2]。近年来, 随着高新技术的飞速发展, 大尺寸、高品质晶体材料已成为制约相关行业发展的瓶颈。2021年, 中国科学技术协会在第二十三届中国科协年会闭幕式上发布了10个对科学发展具有导向作用的前沿科学问题,其中中国科学院深圳先进技术研究院提出的“如何突破大尺寸晶体材料的制备理论和技术”居十个前沿科学问题的首位, 说明大尺寸晶体材料制备方面的基础科学问题已经成为制约该行业快速发展的关键[3]

材料结晶是一个物质发生相变的复杂过程[4],晶体生长的典型方法包括气相、溶液和熔体法, 均涉及到籽晶在生长界面处的成核和生长过程[5]。晶体生长过程涉及复杂的物理和化学问题, 大尺寸晶体生长更涉及到不同尺度上的相变、界面变化、缺陷形成与增殖机理。工业生产层面亟需根据晶体生长原理和技术建立可靠的结晶工艺, 设计可计量的智能化、数字化晶体生长装备。化学、物理学、数学、材料学和工程等相关领域科学家共同努力提出了晶体平衡形态理论、界面理论模型、结晶生长的化学键合理论等来解决晶体生长过程中工程问题。材料结晶模型是以相图为基础, 确定材料的组成与相关物理化学参数, 结合材料结晶理论和生长方法共同制备大尺寸晶体材料[6]。基础科学研究领域还需要研究晶体材料的多尺度结晶生长新理论, 准确定量描述成核与生长过程, 综合考虑晶体生长过程中的跨尺度热力学和动力学。

结晶过程中的原位观测与测量技术可为发展结晶理论和控制晶体品质提供重要的实验证据。计算模拟结晶过程解决了某些过程无法实验验证的难题。本文主要总结结晶过程中采用的原位方法和多尺度计算模拟技术,期望在大尺寸晶体材料生长过程中能够结合计算模拟与原位表征, 最终实现量化整个晶体生长周期, 为优化生长工艺和控制品质提供数据支持。

1 结晶生长的化学键合理论及大尺寸稀土晶体快速生长方法

晶体生长理论包括热力学和动力学两大方面, 经过多年的发展形成了很多优秀的理论成果。由于结晶过程的复杂性, 很难为实际晶体生长提出一个完备的理论模型。在国家标准《人工晶体材料术语》(GB/T 39131-2020)[7]中规定了部分晶体和生长机理的定义, 例如:

1)结晶生长的化学键合理论是指利用三相区描述生长过程, 在过渡相区, 结晶学结构和结晶环境共同决定生长界面处的离子/分子排布, 进一步决定化学键合模式。

2)多尺度结晶生长界面处溶液/熔体中晶体组成之间不同聚集态的能量分布诱导的结晶过程。

3)快速生长是指在动力学控制的实际生长中, 优化生长参数使生长界面处晶体组成间聚集态的能量分布接近于热力学生长状态, 从而提高生长速率, 并接近于热力学生长速率。

4)稀土晶体是指稀土元素可以完整占据结晶学结构中某一格点的晶体。

近年来, 中国科学院深圳先进技术研究院薛冬峰研究团队结合结晶生长的化学键合理论, 定量优化了系列稀土晶体的生长参数, 在多尺度范围协调各向异性的结晶热力学和各向同性的结晶动力学, 建立了快速生长方法。例如利用提拉法生长了公斤级铌酸锂、铝酸盐、硅酸盐激光和稀土闪烁晶体(晶体直径≥60 mm、生长速度高于0.05 mm/min)以及利用微下拉法生长了稀土铝酸盐、镓酸盐、硅酸盐单晶光纤(直径0.5~3 mm)[8-9](图1)。

图1

图1   基于结晶生长的化学键合理论的快速晶体提拉生长技术制备的Ce: LYSO闪烁晶体的照片[9]

Fig. 1   Picture of Ce: LYSO scintillation crystals prepared by innovative fast crystal lifting growth technique based on the chemical bonding theory of crystalline growth[9]


2 原位显微技术研究晶体生长过程

2.1 原位光学显微镜

原位光学显微镜常用于观察生长过程中晶体形态的变化[10], 或是晶体生长界面形貌的演变。如原位观测KH2PO4(KDP)在玻璃表面生长的枝晶形貌(图2,本课题组工作), 由此可以探究晶体生长速率的影响因素[11], 且原位光学显微镜也可以用于高温环境下的原位监测。光学显微成像测量技术的空间分辨率较低, 因此光学显微镜常与其他原位表征技术相结合, 从而获取到更多结晶信息。

图2

图2   KDP生长结晶的原位光学显微镜照片

Fig. 2   In-situ optical microscope crystallization images of KDP growth

(a) By optical microscope; (b) By camera


另一种使用激光作为光源的显微镜也可以原位表征高温晶体的生长行为。高温激光共聚焦扫描显微镜(High-temperature laser scanning confocal microscopy)使用卤素灯作为加热源, 具有快速升温(1200 K/min)和降温(3000 K/min)的功能。近年来其常被用来原位研究高温熔体的结晶和生长行为, 例如不同气氛、不同降温速率条件下的凝固和相转变机制[12]

2.2 电子显微镜

扫描电子显微镜(Scanning electronic microscopy, SEM)是材料研究的主要表征手段, 相比较光学显微镜可以在更小尺度观测材料特征。通过合适的结晶腔室设计, SEM可以原位观测到晶体生长过程的界面形貌和形态转变, 帮助探究晶体成核与生长机理。利用原位SEM观察分子束外延砷化镓和硅生长的初始阶段, 可以显示10 nm~100 μm范围内的原子台阶和二维岛。实验成功观测了取决于吸附原子扩散长度和台阶尺寸的不同生长模式, 真实空间图像分为二维岛成核、台阶流和不稳定台阶流[13]。通过环境SEM观测到六方冰晶在过饱和水蒸气环境中通过台阶生长形成。这些台阶来自两个不同的起源, 即螺钉位错位和初始台阶[14]。但是受技术限制, 用SEM观测高温熔体结晶过程还鲜有报道。

透射电子显微镜(Transmission electron microscope, TEM)比SEM具有更高的电子能量, 可以进行原子分辨率表征[15]。相较于原位SEM, 原位TEM可以获取更多的微观信息。该技术在溶液法纳米材料结晶机理研究得到了广泛应用, 但对高温熔体结晶研究相对较少[16]。采用HRTEM(High resolution transmission electron microscope)观察浮区硅熔融凝固过程中的结晶行为, 发现在高温下形成的点缺陷簇[17]。{111}液固界面通过一对具有几个原子高度的台阶的横向移动来扩展, 而{100}液固界面可以保持平坦的形貌并在两个端面之间延伸。在大约20层台阶处观察到结晶的{111}液-固界面。

SEM和TEM只能在高真空条件下进行, 所以实验样品需要在强电子束下保持稳定, 并且高温下的原位实验过程中必须保证样品位置不变, 这些因素限制了可探究的结晶体系。

2.3 原子力显微镜

原子力显微镜(Atomic force microscope, AFM)通过固体探针与样品表面之间的原子间相互作用力来研究样品的表面结构[18]。AFM可以研究结晶过程中的台阶、表面缺陷、形貌演化以及生长动力学等。但是AFM空间和时间分辨率比电子显微镜要差, 还要注意AFM探针尖可能会对结晶体系产生影响。

Krasinski等[19]使用原位AFM观测了KDP晶体生长过程中的表面形貌, 并检测到生长小丘、阶梯束、生长螺旋等不同条件下的定性特征和定量数据, 验证了部分晶体生长动力学理论问题[20]。原位AFM证明BaWO4复杂形貌是由经典生长机理形成的, 而不是由非经典生长理论产生[21]。在纳米到毫米尺度, 原位AFM对探究晶体生长过程结晶机理有极大帮助。

3 原位光谱技术研究晶体生长过程

3.1 红外光谱

作为一种振动光谱, 傅里叶变换红外光谱(Fourier transform infrared, FTIR)能反映材料化学键的变化信息[22-23]。再加上设备的易操作性, FTIR可作为研究晶体生长机制的原位监测技术。采用衰减全反射傅里叶变换红外光谱(Attenuated total internal reflectance Fourier transform infrared, ATR-FTIR)可以在结晶过程中原位测量溶液的浓度、过饱和度、溶解度以及介稳极限, 并且具有足够的准确度[24]。Xue等[25-26]利用ATR-FTIR研究了NH4H2PO4(ADP)、KH2PO4(KDP)的结晶过程。原位ATR-FTIR可以实时记录结晶过程中基团的变化及键的断裂与形成, 如ADP、KDP等晶体, 为水溶液中分子晶体结晶过程及其化学键性质提供一定策略。并且,原位ATR-FTIR能够观测到晶体结构变化[27], 鉴定结晶过程中的结构转变, 这有利于研究结晶过程中的系统动力学[28-29]

无定形碳酸钙是碳酸钙结晶过程中重要的中间相, 通过原位FTIR可以观测到水分诱导的碳酸钙结晶的微观动力学变化[30]。Maslyk等[31]通过原位FTIR分析了制备的无定形一水碳酸钙(aCCM)局部键合环境与其晶体对应物一水碳酸钙局部环境的比较, 并获得了不同振动模式的示意图(图3)。通过这种方式, 他们合成了具有独特反应性质的一水碳酸钙的缺陷变体, 表征其结构并探索结晶行为, 对非晶材料及结晶材料的生长过程均起到了一定的指导意义。

图3

图3   水合碳酸钙结晶的红外光谱[31]

Fig. 3   Crystallization spectrum of hydrated calcium carbonate[31]

(a) FTIR spectra of calcium carbonate monohydrate (blue spectrum) and aCCM (black spectrum); (b) Schematic representation of different vibrational modes; (c) FTIR spectra of aCCM recrystallized in acetonitrile mixture after different intervals; (d) Rectangle area in (c) showing hydroxyl stretching band region during recrystallization of aCCM after different intervals


原位FTIR也常用于研究薄膜晶体生长过程, 可以获取有关表面温度、厚度、生长速率及表面反应等信息[32]。Jonas等[33]通过原位FTIR观测气相化学沉积中气相的组成, 并借以验证气相中的化学反应对沉积过程的基本影响, 从而有助于理解气相结晶机制。

3.2 拉曼光谱

在高温溶液晶体的生长过程中, 尤其是在固液界面相邻液相区的晶体生长边界层, 其微观结构对于晶体生长机理和习性至关重要, 原位拉曼光谱以其可以原位观察、微尺度分析、可在高温下测量等优点,成为研究晶体生长微观边界层理论的重要工具[34]

原位拉曼可以有效分析晶体结构的演变信息[35], 获得结晶转变过程中不同的中间相结构, 探究结晶过程的机理[36-37]。Liu等[38]利用原位高温拉曼探究了La2CaB10O19(LCB)在不同温度下的微观结构演变, 探究其生长习性。如图4所示, 结合光谱分析, 在熔融过程中, 五硼酸盐基团演变为基团B5O8Ø2, 随着原料熔化, B5O8Ø2进一步连接形成类似聚合物的硼氧链,从而达到高黏度。具有高极性的阳离子可以将类似聚合物的硼氧基团分解成简单的基团。因此, 在制备LCB晶体时应加入合适的阳离子助熔剂将复杂层转化为一维链甚至零维团簇,降低生长液的浓度, 从而有利于制备大尺寸LCB晶体。

图4

图4   LCB晶体生长拉曼光谱及微观结构演变

Fig. 4   Raman spectra and microstructure evolution of LCB crystal growth

(a) Raman spectra of LCB crystals at room temperature and LCB-grown raw material powders at different temperatures; (b, c) Molecular structural evolution in LCB-grown melts[38]


原位拉曼光谱可用于识别组成基团的氢键相关配位几何形状, 基团之间的聚集可以通过跟踪拉曼振动带进行演变推断[39], 不同的晶向对应不同的拉曼位移[40], 晶体生长中的这些信息都可以通过原位拉曼获得。

原位拉曼以其广泛的适配性常与其他表征方式共同使用。原位ATR-FTIR与原位拉曼相结合可以免校准的方式估算晶体的生长速率, 避免时间冗长且耗费昂贵的校准程序[41]。例如, 与聚焦光束反射率测量(FBRM)相结合用于研究六硝基六氮杂异伍兹烷(HNIW)的结晶动力学, 可以检测其转化、浓度、成核速率和生长速率[35]

利用原位拉曼研究水溶液中结晶过程, 可以去除水分子的影响, 有利于研究结晶初期的分子变化。Xue等[42-45]利用原位拉曼技术研究了尿素、KDP、ADP、石膏的结晶过程,通过原位拉曼光谱识别出C=O、CN、NH2和OH基团的微小变化, 证明成核阶段尿素分子经历水合单体、预成核团簇和晶核三个阶段。如果在溶液中进行原位拉曼观察, 当溶解度较低时只能探测到信息含量低的噪声光谱, 这是目前原位拉曼需要解决的问题[46]。除了可以测量微小结构变化外, 拉曼光谱还可以获取表面的变化、缺陷分布、短程是否有序等信息, 这是许多其他原位表征手段难以实现的。

3.3 差分反射光谱

差分反射光谱(Differential reflectance spectrum, DRS)是通过测试样品不同相相邻部分的反射率差别与入射光子能量变化关系得到的光谱[47]。结晶过程中伴随有明显的相变过程, 尤其是晶体薄膜的生长, 原位DRS以其高灵敏度的特性被应用于监测薄膜生长[48]

通过原位DRS探究天然SiO2上形成并五苯膜的界面形貌及相变过程[49], 结果表明第一层单晶呈斜方相, 从斜方相到薄膜相的相变从第二层开始。这一结果为探究并五苯薄膜在SiO2上的结构演变提供了新思路[50]。Wang等[51]利用原位DRS监测了化学气相沉积二硫化钼过程, 这对过渡金属二硫化物的生长机理及可控性研究具有指导意义。

4 原位同步辐射技术研究晶体生长过程

4.1 能量色散X射线衍射

与传统的实验室X射线源相比, 能量色散X射线衍射(Energy dispersive X-ray spectroscopy, EDXRD)多采用强度明显更高的同步辐射X射线源, 更容易监测结晶过程的中间体和前驱体[52]。EDXRD使用高强度的同步辐射带来了高时间分辨率, 允许在几秒钟的时间尺度上从毫克级别的样品中获取光谱。这一特点使EDXRD可以对其他大多数原位技术无法表征的水热结晶进行监测, 并能够对其中不同化合物形成的演变过程进行表征。除此之外, 在考虑结晶边界条件的同时, EDXRD可以获取反应进展的详细信息, 绘制反应进度与时间的变化图像。

Beale等[53]采用水热法在低于200 ℃的温度下制备了不同相的钼酸铋, 并用EDXRD对这些相进行了研究, 发现αβ结晶相是直接从无定形凝胶混合物中形成的, 没有中间相, 证明该水热合成过程优于传统固态路线。同样地, Zhou等[54]利用EDXED技术监测了水热法合成纳米结构钨酸铋的过程。Ma等[55]利用EDXRD可以在高压下进行原位监测的特点, 研究了压力诱导三聚氰胺的结构相变。通过分析与优化原位EDXRD在不同压力探测的三聚氰胺的光谱图(图5), 研究人员构建了在不同压力下三聚氰胺的晶体结构。确定三聚氰胺从环境压力到14.7 GPa的压力范围内, 分别发生了从单斜结构到三斜结构(1.3 GPa)再到正交结构(8.2 GPa)的结构相变, 为高压环境条件下获取晶体结构提供了合理可行的方案。

图5

图5   三聚氰胺在不同压力下的能量色散X射线衍射图[55]

Fig. 5   Energy dispersive X-ray diffraction patterns of melamine at different pressures[55]


使用EDXRD仅能监测到结晶相, 无法监测液相中无定形相以及极小的前驱体, 来自液相中的无定形相及分子的信息可以通过扩展X射线吸收精细结构(Extended X-ray absorption finestructure, EXAFS)获得。因此, 针对水热法, 通过EDXRD及EXAFS两种方法互补则可以更好地理解其中的结晶机理[56]

4.2 X射线吸收精细结构谱

X射线吸收精细结构谱(X-ray absorption fine structure, XAFS)分为近边吸收结构谱(X-ray absorption near edge structure, XANES)和扩展X射线吸收精细结构谱(Extended X-ray absorption finestructure, EXAFS)。该技术可以获取到电子和原子局部结构信息, 空间分辨率可达1 nm[57]。XANES对应吸收边前到吸收边后50 eV的能量范围, 主要探测吸收原子价态、立体配位及化学键等信息, 采集时间较短且吸收信号清晰, 可以快速鉴别元素的化学种类; EXAFS对应吸收边后50 eV以上的能量范围, 主要探测原子种类、配位数、键长和无序度等信息[58]

原位XAFS技术可以在真空、环境压力或高压条件下使用, 是研究结晶过程中元素变化的重要技术手段[59]。XAFS也被用于探究在晶体掺入特定元素过程中, 该元素在晶体表面特定位置分布以及在晶体中的局部配位环境变化[60]。Zhang等[61]利用原位XANES探测了KTP晶体生长过程中出现的灰色轨迹区域的形成机制, 确定了Ti3+的影响因素, 最终解决了该灰轨问题, 生长出高质量的晶体。Yao等[62]使用原位时间分辨XAFS光谱研究AuCl还原合成Au分散纳米晶体, 并提出了动力学三步机制, 包括金纳米晶体的初始成核、缓慢生长以及最终聚结。原位XAFS可广泛应用于研究过渡金属纳米晶体的液相合成动力学。

4.3 小角X射线散射

小角X射线散射(Small angle X-ray scattering, SAXS)、异常小角X射线散射(Anomalous small angle X-ray scattering, ASAXS)以及广角X射线散射(Wide angle X-ray scattering, WAXS)一般用于原位监测纳米级晶体。SAXS及ASAXS可以获取到有关颗粒的大小、形状和方向等信息, WAXS可以识别和量化纳米微晶的晶向等晶体结构信息[63]。因此, 可以在同一个实验中结合SAXS、ASAXS及ASAXS获取不同长度尺度上的晶体结构[64]。Bots等[65]通过原位SAXS/WAXS探究了无定形碳酸钙(Amorphous calcium carbonate, ACC)的结晶机制和动力学, 并根据WAXS及SAXS数据获得ACC结晶球霰石的反应程度信息(图6), 有助于充分理解ACC到球霰石再到方解石结晶的基本途径。

图6

图6   ACC结晶时间分辨的WAXS及SAXS数据图[65]

Fig. 6   Time-resolved WAXS and SAXS data of ACC crystallization[65]

(a) 3D representation of the time resolved WAXS modes in the experiment; (b) Stacked time series of the SAXS modes with time in minutes, and the arrows indicating positions of peaks caused by scattering from the growing vaterite crystallites, 1 Å =0.1 nm


Zhou等[66]利用原位同步加速器SAXS和WAXS探究了70~90 ℃范围内拉伸的无定形聚乳酸(Polylactic acid, PLA)的应变冷结晶行为和结构演变。根据原位SAXS及WAXS显示的非晶相衍射峰等数据推断出拉伸应变诱导的晶体结构变化。PLA在70 ℃拉伸时, 首先出现介晶体, 然后形成晶体; 在80 ℃下拉伸时, 以较低的应变和较高的结晶速率诱导晶体。随着应变增加, 结晶度和晶体取向增大。90 ℃拉伸时的结构演变与80 ℃时相似, 但结晶开始时间更早, 结晶速率更高。最终研究认为应变诱导的介晶/晶体和薄片是由原本存在于PLA玻璃中的中间相形成的。Cravillon等[67]使用组合的时间分辨SAXS/WAXS实时监测了沸石咪唑酸盐框架晶体的快速成核及生长, 利用同步辐射做到在各种长度尺度上具有高时间分辨率[68-69]。通过这种方式观测到的成核前簇和纳米晶体, 意味着其可能不遵循经典成核理论的复杂结晶过程, 这对全面了解该类晶体结晶机理有巨大帮助。

4.4 中子技术

小角中子散射(Small angle neutron scattering, SANS)和中子衍射(Neutron diffraction, ND)的基本原理与X射线衍射接近, 但不同的是大多数原子对中子的吸收率低, 其散射过程发生在原子核处, 因此二者可以在特殊环境下进行原位监测, 并能检测到轻元素[70-71]。Fernandez-Martin等[72]使用原位SANS探究了纳米晶体在两种微晶玻璃系统上的成核与生长, 通过SANS分析体系介观尺度结构信息, 解释了锂铝硅酸盐分别在(Mg、Zn)尖晶石两种微晶玻璃系统的不同成核和生长机制。

但相较于X射线而言, 中子通量过低, 很难探测快速反应和过程。Walton等[73]利用ND进行原位跟踪, 进一步阐明钛酸钡的水热结晶机理。他们使用高入射通量的探测器更快地收集数据, 并从中提取钛酸钡形成的结晶曲线, 从而获得定量的动力学信息。随着中子衍射技术的进一步发展, 更快速的数据收集会使其成为原位结晶研究中不可或缺的技术。

4.5 其它技术

利用原位表征方法可在不同时间和空间尺度上探究晶体的形成。除了上述原位方法外, 还有如原位反射高能电子衍射(Reflection high-energy electron diffraction, RHEED)[74]、原位核磁共振谱(Nuclear magnetic resonance spectroscopy, NMR)[75]、原位探测晶体生长界面电动势(Growth interface electromotive force, GEMF)[76]等其他原位监测结晶生长技术, 应用报道较少, 这里不过多赘述。

单一的原位监测技术仅能获得部分晶体生长过程的相关信息, 在以往的探究中, 不同的原位方法相结合能够获取不同尺度上的全面图像, 从而得到晶体生长过程的广泛结论[77]。许多原位方法相互之间受不同的样品环境条件限制, 如何合理设计结合不同原位技术监测晶体生长过程, 也是发展结晶理论及控制结晶生长过程的重点方向之一。

5 结合机器学习的在线晶体生长技术

大尺寸晶体生长类似黑箱过程, 其中涉及众多的热量、流场、相变等,将机器学习应用于大尺寸晶体生长将带来研发范式的变化。日前, 日本名古屋大学通过机器学习高速预测内部状态, 创建了可视化系统实时模拟晶体生长设备内部和高温熔体的状态, 在晶体生长过程中可以实时调控各种参数, 并成功生长了高质量大尺寸SiC单晶[78]。通过该方式可以将高质量无缺陷单晶研发周期缩短至1/10甚至1/100(图7)。这种结合人工智能系统原位监测晶体生长的表征手段在未来大数据工业中有极大的发展前景。

图7

图7   基于人工智能预测生长炉内状态, 平均预测时间可达到0.0003 s[78]

Fig. 7   Based on artificial intelligence, the average prediction time of the growth furnace state reaching 0.0003 s[78]


6 多尺度计算模拟

计算模拟是研究大尺寸无机材料制备过程的有力手段。由于材料制备是多自由度在时空中的演化过程(图8), 不同尺度的表征研究对应着不同尺度的模拟方法[79], 例如原子/分子尺度的第一性原理、分子动力学模拟、蒙特卡罗模拟、介观尺度的相场模拟以及可模拟宏观尺度有限元模拟等方法。

图8

图8   材料在时间和空间两个维度上的多尺度计算方法[79]

Fig. 8   Time and space dimensions of multi-scale calculation method for materials[79]


6.1 原子/分子尺度的模拟

6.1.1 第一性原理方法

第一性原理方法指不依赖于任何经验参数, 只需知道基本的物质结构和元素种类, 求解整个体系的薛定谔方程, 就可以获得物质的能量状态、电子结构和多种物理化学性质的一类方法[80]。基于密度泛函理论求解薛定谔方程的第一性原理方法是微观尺度材料计算学中最主要和关键的一类方法[80]。虽然在单电子近似下, 多体问题可以求解, 但计算体系仍然有限。一般的计算体系的大小在数百个原子以内。基于第一性原理的分子动力学模拟时间长度约在皮秒量级。随着计算能力提升, 基于第一性原理的计算方法已经成为物理、化学、生物和材料等多个学科中的重要研究工具。

在无机材料的制备方面, 通过第一性原理方法求得体系的薛定谔方程, 可以获得无机材料基态电子密度和能量本征值。通过对本征值的处理, 可以获得无机材料的大部分基态性质和部分激发态性质, 例如缺陷性质、稳定结构、带隙、弹性模量等。

缺陷强烈影响材料的物理性能, 并对其应用性能产生决定性影响。第一性原理方法适合研究原子尺度上晶体材料的点缺陷[81],它已经成为一种强大的方法, 可以补充实验, 并作为预测工具识别和表征缺陷。通过电子结构计算对晶体材料中的点缺陷进行理论建模。目前已经发展了一种通用的热力学量, 例如形成能、熵和过剩体积等来研究材料的点缺陷性质。如图9所示, 陈昆峰等[82]采用密度泛函理论(Density functional theory, DFT)对铌酸锂晶体的缺陷形成能进行了计算, 并对不同缺陷模型(NbLi4+、VLi、NbLi4++VNb5−)的XRD模式进行了模拟。结果表明, 在相同成分铌酸锂样品中, Nb反位缺陷是与Li空位共存的最稳定点缺陷。

图9

图9   铌酸锂结构、缺陷、不同点缺陷的形成能与费米能的函数关系[82]

Fig. 9   Lithium niobate structure, defects and formation energy of different point defects as a function of Fermi energy[82]

(a, b) Crystallographic structures of stoichiometric LN and congruent LN with anti-site NbLi4+ and VLi defects. Green octahedra indicate NbO6 and LiO6; (c) Formation energies of different point defects (NbLi4+, VLi, and NbLi4+ + VNb5−) in LN as a function of Fermi energy


物质的结构对其性质具有决定性影响, 在原子分子尺度, 结构设计是以具体功能为导向进行功能材料设计的基础。虽然现有结构预测方法能为研究人员提供丰富的结构, 但最根本的支撑还是基于第一性原理的计算。通过不同结构之间的对比计算获得稳定结构, 达到材料设计的目的。例如在高温超导材料的研究方面, Wang等[83]在高压下用CALYPSO方法预测了类CaH6超导方钠石(图10)。CaH6的结构被证明是非常稳定的, 在该材料中存在产生超导性的电子-声子相互作用。超导转变温度(称为临界温度)在220~235 K之间, 该温度可以使用一般制冷系统实现。该研究提供了超导实用化的可能。

图10

图10   CaH6的原子结构(左)和电子局域函数(右)[83]

Fig. 10   Atomic structure (left) and electron localization functions (right) of CaH6[83]


带隙是区分绝缘体、半导体、金属三类材料的基本参数。虽然通过第一性原理方法计算可以估算晶体材料的带隙, 但是该方法不能十分准确地给出半导体和绝缘体的带隙。这主要是由电子间自相互作用(Self-interaction)导致。在预测带隙方面的不足导致计算的缺陷形成能和跃迁水平有很大的不确定性, 特别是在宽带隙的情况下[84]。因此, 基于LDA或GGA计算的缺陷浓度和缺陷电光活性一般在半定量水平上[84-86]

6.1.2 基于经验势的模拟方法

基于经验势的模拟方法有两类[87-88]:一类是分子动力学模拟, 另一类是蒙特卡罗模拟。这两类方法能模拟原子数在107量级以下的体系, 其中分子动力学方法的模拟时间可达微秒量级。基于经验势的方法是无机材料制备过程中表征微观结构和性质的关键手段之一, 可研究体系的尺寸大小和时间尺度远超过第一性原理方法。

分子动力学方法是在经典力学的框架下, 将原子核和电子作为整体, 不考虑量子效应, 求解体系中每个原子的牛顿方程, 获得体系在坐标和动量空间中的演化轨迹[88]。对于平衡体系的模拟, 在远大于体系本征弛豫时间的范围内进行时间平均,可以获得无机材料的多种宏观物理性质, 例如热熔、密度、热膨胀系数等。对于非平衡体系的模拟, 在坐标和动量空间进行动力学演化轨迹的分析, 获得无机材料的微观结构和相关性质的演变过程, 从而揭示其内在机理。

蒙特卡罗模拟方法是通过随机抽样的方式求解体系的系综分布, 并根据该系综获得体系的统计性质[87]。该方法由Metropolis和Ulam在1949年发明[89],相比于分子动力学方法, 该方法没有时间概念, 体系的演化是随机过程。 因此, 该方法更适合模拟本征弛豫时间很长的体系。

在无机材料晶体生长领域, 由于固液界面埋藏于液体中, 原位探测面临巨大挑战, 分子动力学模拟对分析晶体生长动力学机制发挥关键作用。利用分子动力学方法, 建立了多种晶体生长动力学模型。最先提出的是扩散模型(WF模型)[90], 该模型认为晶体生长的动力学过程主要由原子扩散决定, 并解释了随着过冷度增大生长速度降低的趋势。随后Broughton等[91]利用分子动力学模拟建立了碰撞模型, 该模型认为原子热运动是决定晶体生长动力学过程的关键。最近的研究发现, 如图11所示, 在晶体生长过程中界面原子以集体运动的模式从无序状态转变为有序状态, 并且该过程不存在热力学势垒, 因而实现了超快生长[91]。虽然随着过冷度的增加, 原子扩散和热运动能力都在减弱, 一般体系的生长速度都会减小,但是在最近的分子动力学模拟中, 如图12所示, 人们发现在无生长势垒的胶体颗粒体系中, 即使在深过冷状态下, 体系仍然能保持较高的生长速度[93]

图11

图11   在能量最小化过程中, 界面层中原子的位移[92]

Fig. 11   Displacement of atoms in the interface layer during energy minimization[92]

(a) Al atoms; (b) Ni atoms


图12

图12   晶体生长速度V随温度的变化[93]

Fig. 12   Variation of crystal growth rate Vwith temperature[93]

Error bars represent the standard deviation of growth velocity measurements. The system can still maintain the maximum growth rate in deep and supercooled region without temperature change


常规的分子动力学模拟对稀有事件的模拟十分困难, 而蒙特卡罗方法则可以很好地模拟该过程。例如Ding和Yakobson等[94]采用动力学蒙特卡罗方法对富勒烯的合并过程进行了研究,发现合并过程中体系能量和结构演变如图13所示。模拟结果表明, 短帽单壁碳纳米管在结构演化过程中表现出低能亚稳态结构。

图13

图13   通过路径搜索方法研究C60二聚体结合的最佳路线[94]

Fig. 13   Structural snapshots and relationship between energy and GSW of the optimal route for C60 dimer binding by the path search method[94]

(a-f) Structural snapshots and relationship between energy and GSW steps; (g) GSW in the 0, 5, 15, 25, 40, and 80 GSW steps. Red and green represent two carbon atoms in C60, respectively


6.2 介观尺度的模拟

相场模拟方法的研究对象是体系在介尺度的动力学演化非平衡过程, 是探究无机材料介尺度相貌和组织结构演变的重要手段。该方法以经典热力学和动力学为基础, 根据Ginzburg-Landau理论建立材料组织演化计算数值模型[95]。该方法将体系视为连续的“场”, 通常用一组“场”来描述体系的局部性质, 而体系的总自由能是“场”的泛函, 在体系总自由能降低的驱动下, 通过求解动力学方程获得“场”的演化,从而获得材料体系的微观组织形貌、元素扩散和畴结构的动力学变化特征。

枝晶的生长演化对材料的微观组织形貌有重要影响, 例如锂电池中枝晶的生长会改变电极局部形貌, 尖锐的枝晶可能刺破隔膜造成电池内部短路, 导致安全问题。Hong和Viswanathan开发了一个基于巨势非线性相场模型(Grand potential-based nonlinear phase-field model)[96], 在二维空间上研究了大/小过电位下锂枝晶的动态形态演化, 揭示了离子输运和电化学反应之间的竞争会导致截然不同的生长模式。基于此研究,他们提出了一种具有较高局部离子浓度的“成分梯度电解质”,作为潜在抑制枝晶形成的方法。

在金属材质制备方面, 微观偏析对材料性能至关重要。Gong等[97]通过二维和三维定量相场模拟, 如图14所示, 研究了精炼Al-Cu合金多晶凝固过程中的微观偏析动力学。从不同晶粒细化水平、冷却速率和固体扩散系数三个方面的模拟表明, 凝固结束时(即当固体分数接近单位1时),溶质偏析与晶粒形态和反扩散没有强烈的相关性。

图14

图14   在0.1 K/s的冷却速度下, Al-1% Cu合金凝固的相场模拟[97]

Fig. 14   Phase-field simulation of the solidification of Al-1% Cu alloy at a cooling rate of 0.1 K/s[97]

(a1-a4) Solid fraction of the 2D system at 0.9; (b1-b4) Substantial fraction of the 3D system at 0.2; (b1-b4)3D systems corresponding to (a1-a4), respectively, containing different numbers of grains


6.3 宏观尺度的模拟

有限元模拟方法是一种解决应力分析、热传导、电磁学和流体力学等工程应用问题的宏观尺度模拟方法[98], 它通过离散化的数值计算近似求解某些复杂边界条件和初值条件下的偏微分方程组, 获得体系相关特征和性质。目前,该方法在无机材料制备的热场、流场分析中有广泛应用。

无机材料是在多场耦合下制备的, 例如单晶硅。在工业规模的设备中模拟硅的直拉法生长过程中的传热和氧掺入, 需要对整个系统的传导、对流和径向传热进行耦合模拟, 并模拟熔体中的湍流对流等。Lipchin和Brown[99]提出了一种杂化热传导的热毛细模型和Jones-Launder低雷诺湍流模型, 用于模拟整个直拉系统的传热和熔体中的湍流对流。该方法具有很好的鲁棒性, 揭示了晶体和坩埚旋转对传热和湍流的影响。

7 总结与展望

多尺度晶体材料制备的制备过程经历成核和生长阶段, 时空尺度上包括多个过程:原子分子-团簇-晶核-体块晶体, 温度场-流体场-物质输运-生长界面推移, 点-线-面缺陷形成与延伸。多尺度晶体材料生长的复杂性也增加了完全复原生长时空过程的难度, 目前原位结晶表征技术只能展现生长过程的一个或几个方面。在更小的空间和时间尺度上, 以及多尺度耦合方面, 采用计算模拟方法研究晶体生长过程更具有优势。建立实际生长环境的原位/在线表征技术以及计算模拟方法, 将是未来的发展趋势, 特别是结合机器学习、大数据等手段, 会使大尺寸无机材料制备的迭代周期大大缩短。这也将带来生长理论、生长装备、生长技术以及大尺寸无机材料品质的快速发展和提升。

参考文献

LIU F, CHEN K F, PENG C, et al.

Advance in theory and technology of rapid growth of large-size crystals

Journal of Synthetic Crystals, 2022, 51: 1732.

[本文引用: 1]

殷绍唐. 晶体生长微观机理及晶体生长边界层模型. 北京: 科学出版社, 2020:

[本文引用: 1]

中国科学技术协会. 面向未来的科技 2021 重大科学问题、工程技术难题及产业技术问题解读. 北京: 中国科学技术出版社, 2021: 2-9.

[本文引用: 1]

KUNFENG CHEN, JI’AN WU, QIAN’YU HU, et al.

Omni-functional crystal: advanced methods to characterize the composition and homogeneity of lithium niobate melts and crystals

Exploration, 2022, doi:10.1002/EXP.20220059.

DOI      [本文引用: 1]

CHEN K F, XUE D F.

Fast growth of cerium-doped lutetium yttrium orthosilicate single crystals and their scintillation properties

Journal of Rare Earths, 2021, 39(12): 1527.

DOI      URL     [本文引用: 1]

ZHAO J, MEI DJ, XUE DF, et al.

Recent advances in nonlinear optical rare earth structures

Journal of Rare Earths, 2021, 39(12): 1455.

DOI      URL     [本文引用: 1]

王海丽, 杭寅, 潘世烈, . 人工晶体材料术语, 国家标准GB/T39131-2020, 2020-10-11.

[本文引用: 1]

LIU F, CHEN KF, PENG C, et al.

Recent advances and perspectives on melt structures of large-size functional oxcide crystals

Journal of the Chinese Ceramic Society, 2023, DOI: 10.14062/j.issn.0454-5648.20220301.

DOI      [本文引用: 1]

SUN C, XUE D.

Chemical bonding theory of single crystal growth and its application to fast single crystal growth of rare earth inorganic materials

Science China Chemistry, 2018, 48(8): 804.

[本文引用: 3]

ASWAL D K, SHINMURA M, HAYAKAWA Y, et al.

In situ observation of melting/dissolution, nucleation and growth of NdBa2Cu3Ox by high temperature optical microscopy

Journal of Crystal Growth, 1998, 193(1/2): 61.

DOI      URL     [本文引用: 1]

ASWAL D K, SHINMURA M, HAYAKAWA Y, et al.

In situ measurement of the growth rate of YBa2Cu3Ox single crystals

Journal of Crystal Growth, 1999, 197(1/2): 379.

DOI      URL     [本文引用: 1]

SOHN I, DIPPENAAR R.

In-situ observation of crystallization and growth in high-temperature melts using the confocal laser microscope

Metallurgical and Materials Transactions B, 2016, 47B: 2083.

[本文引用: 1]

HOMMA Y.

23-In Situ Observation of Crystal Growth by Scanning Electron Microscopy

Handbook of Crystal Growth (2nd Edition) Fundamentals, 2015: 1003-1030.

[本文引用: 1]

ZHANG Z, FEI L, RAO Z, et al.

In situ observation of ice formation from water vapor by environmental SEM

Crystal Growth Design, 2018, 18: 6602.

DOI      URL     [本文引用: 1]

ZHANG Z, LIU N S, LI L Y, et al.

In situ TEM observation of crystal structure transformation in InAs nanowires on atomic scale

Nano Letters, 2018, 18(10): 6597.

DOI      PMID      [本文引用: 1]

In situ transmission electron microscopy investigation of structural transformation in III-V nanowires is essential for providing direct insight into the structural stability of III-V nanowires under elevated temperature. In this study, through in situ heating investigation in a transmission electron microscope, the detailed structural transformation of InAs nanowires from wurtzite structure to zinc-blende structure at the catalyst/nanowire interface is witnessed on the atomic level. Through detailed structural and dynamic analysis, it was found that the nucleation site of each new layer of InAs and catalyst surface energy play a decisive role in the growth of the zinc-blende structure. This study provides new insights into the growth mechanism of zinc-blende-structured III-V nanowires.

LI J, DEEPAK F L.

In situ kinetic observations on crystal nucleation and growth

Chemical Review, 2022, 122: 16911.

DOI      URL     [本文引用: 1]

NISHIZAWA H, HORI F, OSHIMA R.

In-situ HRTEM observation of the melting-crystallization process of silicon

Journal of Crystal Growth, 2002, 236: 51.

DOI      URL     [本文引用: 1]

MCPHERSON A, MALKIN A J, KUZNETSOV Y G.

Atomic force microscopy in the study of macromolecular crystal growth

Annual Review of Biophysics and Biomolecular Structure, 2000, 29: 361.

DOI      URL     [本文引用: 1]

KRASINSKI M J, ROLANDI R.

Ex situ investigation of surface topography of as-grown potassium dihydrogen phosphate crystals by atomic force microscopy

Journal of Crystal Growth, 1996, 169(3): 548.

DOI      URL     [本文引用: 1]

YANG S F, SU G B, TANG J, et al.

Surface topography of rapidly grown KH2PO4 crystals with additives: ex situ investigation by atomic force microscopy

Journal of Crystal Growth, 1999, 203(3): 425.

DOI      URL     [本文引用: 1]

LIU L, ZHANG S, BOWDEN M E, et al.

In situ TEM and AFM investigation of morphological controls during the growth of single crystal BaWO4

Crystal Growth & Design, 2018, 18: 1367.

DOI      URL     [本文引用: 1]

PETIT T, PUSKAR L.

FTIR spectroscopy of nanodiamonds: methods and interpretation

Diamond and Related Materials, 2018, 89: 52.

DOI      URL     [本文引用: 1]

ALCOTT G R, VAN MOL T, SPEE K.

Evaluation of chemometric models in an FTIR study of the gas phase during atmospheric- pressure CVD of tin oxide thin films

Chemical Vapor Deposition, 2000, 6(5): 261.

DOI      URL     [本文引用: 1]

DUNUWILA D D, BERGLUND K A.

ATR FTIR spectroscopy for in situ measurement of supersaturation

Journal of Crystal Growth, 1997, 179(1/2): 185.

DOI      URL     [本文引用: 1]

SUN C T, XUE D F.

In situ IR spectral identification of NH4H2PO4 structural evolution during crystallization in water-ethanol mixed solvent

CrystEngComm, 2015, 17(13): 2728.

DOI      URL     [本文引用: 1]

SUN C T, XUE D F.

In situ IR spectral observation of NH4H2PO4 crystallization: structural identification of nucleation and crystal growth

Journal of Physical Chemistry C, 2013, 117(37): 19146.

DOI      URL     [本文引用: 1]

SUN C T, XUE D F.

Hydrogen bonding nature during ADP crystallization

Journal of Molecular Structure, 2014, 1059: 338.

DOI      URL     [本文引用: 1]

SUN C T, XUE D F.

Crystallization behaviors of KDP and ADP

Optical Materials, 2014, 36(12): 1966.

DOI      URL     [本文引用: 1]

SUN C T, XUE D F.

In situ ATR-IR observation of nucleation and crystal growth of KH2PO4 in aqueous solution

CrystEngComm, 2013, 15(48): 10445.

DOI      URL     [本文引用: 1]

CHENG M, SUN S T, WU P Y.

Microdynamic changes of moisture- induced crystallization of amorphous calcium carbonate revealed via in situ FTIR spectroscopy

Physical Chemistry Chemical Physics, 2019, 21(39): 21882.

DOI      URL     [本文引用: 1]

MASLYK M, MONDESHKI M, TREMEL W.

Amorphous calcium carbonate monohydrate containing a defect hydrate network by mechanochemical processing of mono-hydrocalcite using ethanol as auxiliary solvent

CrystEngComm, 2022, 24(26): 4687.

DOI      URL     [本文引用: 3]

Calcium carbonate monohydrate-like ACC was made by ball-milling with ethanol as auxiliary solvent. IR and solid-state NMR, diffraction and total scattering show that defects of the hydrate network due to partial displacement of water by ethanol are crucial for amorphization.

MORRISON P W, HAIGIS J R.

In situ infrared measurements of film and gas properties during the plasma deposition of amorphous hydrogenated silicon

Journal of Vacuum Science & Technology A, 1993, 11(3): 490.

DOI      URL     [本文引用: 1]

JONAS S, PTAK W S, SADOWSKI W, et al.

FTIR in-situ studies of the gas-phase reactions in chemical-vapor-deposition of SiC

Journal of the Electrochemical Society, 1995, 142(7): 2357.

DOI      [本文引用: 1]

WANG D, WAN S M, YIN S T, et al.

High temperature Raman spectroscopy study on the microstructure of the boundary layer around a growing LiB3O5 crystal

Crystengcomm, 2011, 13(16): 5239.

DOI      URL     [本文引用: 1]

YANG H O, KIM J H, KIM K J.

Study on the crystallization rates of beta- and epsilon-form HNIW in in-situ Raman spectroscopy and FBRM

Propellants Explosives Pyrotechnics, 2020, 45(3): 422.

DOI      URL     [本文引用: 2]

ZHANG J, WANG D, ZHANG D M, et al.

In situ investigation of BaBPO5 crystal growth mechanism by high-temperature Raman spectroscopy

Journal of Molecular Structure, 2017, 1138: 50.

DOI      URL     [本文引用: 1]

ZHANG X H, LUO H S, ZHONG W Z.

The analysis of morphology evolution in KABO crystal growth

Journal of Crystal Growth, 2006, 292(1): 104.

DOI      URL     [本文引用: 1]

LIU S S, ZHANG G C, FENG K, et al.

In situ Raman spectroscopy studies on La2CaB10O19 crystal growth

Crystal Growth & Design, 2020, 20(10): 6604.

DOI      URL     [本文引用: 2]

SUM C T, CHEN X Y, XUE D F.

Hydrogen bonding dependent mesoscale framework in crystalline Ln(H2O)9(CF3SO3)3

Crystal Growth & Design, 2017, 17(5): 2631.

DOI      URL     [本文引用: 1]

ZHANG N, LIN Z, MAN S.

Fabrication and spectral properties of Tm3+-doped novel bismuthate glasses

Journal of the Chinese Society of Rare Earths, 2022, 40(1): 54.

[本文引用: 1]

CORNEL J, MAZZOTTI M.

Estimating crystal growth rates using in situ ATR-FTIR and Raman spectroscopy in a calibration-free manner

Industrial & Engineering Chemistry Research, 2009, 48(23): 10740.

DOI      URL     [本文引用: 1]

CHEN X Y, SUN C T, WU S X, et al.

Molecular paradigm dependent nucleation in urea aqueous solution

Crystal Growth & Design, 2017, 17(5): 2594.

DOI      URL     [本文引用: 1]

CHEN X Y, SUN C T, WU S X, et al.

Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution

Physical Chemistry Chemical Physics, 2017, 19(13): 8835.

DOI      PMID      [本文引用: 1]

Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH, and CN vibration bands during the urea nucleation stage. Rare earth ions such as La, Gd, and Lu can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln and urea molecules have been confirmed, which are LnO[double bond, length as m-dash]C-N and LnNH-C. Compared with LnNH-C, Ln prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln, the different effects of La, Gd, and Lu on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

SUN C T, XUE D F.

Physical chemistry of crystalline (K,NH4)H2PO4 in aqueous solution: an in situ molecule vibration spectral observation of the early formation stage

Journal of Physical Chemistry C, 2014, 118(29): 16043.

DOI      URL     [本文引用: 1]

ZHANG Y P, XUE D F.

In-situ micro-Raman spectroscopy study of gypsum crystallization driven by chemical reaction

Journal of Molecular Structure, 2020, 1210: 128043.

DOI      URL     [本文引用: 1]

PIENACK N, BENSCH W.

In-situ monitoring of the formation of crystalline solids

Angewandte Chemie International Edition, 2011, 50(9): 2014.

DOI      URL     [本文引用: 1]

FORKER R, FRITZ T.

Optical differential reflectance spectroscopy of ultrathin epitaxial organic films

Physical Chemistry Chemical Physics, 2009, 11(13): 2142.

DOI      PMID      [本文引用: 1]

This Perspective does not have the ambition to entirely review the subject of optical spectroscopy on thin organic films. What we will try to achieve instead is to give an overview on optical reflectance spectroscopy of highly ordered organic thin films in the thickness range from submonolayers to several monolayers, as a tool to study the absorption behavior of such films. By doing so, we will emphasize the relations between the physical layer structure and the resulting optical properties. More specifically, we intend to show on the basis of particular examples what physical effects can be favorably examined by means of real-time optical spectroscopy, i.e., applied during the actual film growth, especially differential reflectance spectroscopy (DRS). Epitaxial organic films on inorganic substrates (insulators and conductors) will be in focus, and also the perspectives of investigating organic-organic heteroepitaxial layers will be addressed.

PROEHL H, NITSCHE R, DIENEL T, et al.

In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates

Physical Review B, 2005, 71(16): 165207.

DOI      URL     [本文引用: 1]

ZHANG L, HU C G, FU X, et al.

Pentacene crystal transition during the growth on SiO2 studied by in situ optical spectroscopy

Synthetic Metals, 2017, 231: 65.

DOI      URL     [本文引用: 1]

ZHANG L, FU X, HOHAGE M, et al.

Growth of pentacene on alpha-Al2O3(0001) studied by in situ optical spectroscopy

Physical Review Materials, 2017, 1(4): 043401.

DOI      URL     [本文引用: 1]

WANG Y N, ZHANG L, SU C H, et al.

Direct observation of monolayer MoS2 prepared by CVD using in-situ differential reflectance spectroscopy

Nanomaterials, 2019, 9(11): 1640.

DOI      URL     [本文引用: 1]

The in-situ observation is of great significance to the study of the growth mechanism and controllability of two-dimensional transition metal dichalcogenides (TMDCs). Here, the differential reflectance spectroscopy (DRS) was performed to monitor the growth of molybdenum disulfide (MoS2) on a SiO2/Si substrate prepared by chemical vapor deposition (CVD). A home-built in-situ DRS setup was applied to monitor the growth of MoS2 in-situ. The formation and evolution of monolayer MoS2 are revealed by differential reflectance (DR) spectra. The morphology, vibration mode, absorption characteristics and thickness of monolayer MoS2 have been confirmed by optical microscopy, Raman spectroscopy, ex-situ DR spectra, and atomic force microscopy (AFM) respectively. The results demonstrated that DRS was a powerful tool for in-situ observations and has great potential for growth mechanism and controllability of TMDCs prepared by CVD. To the best of the authors’ knowledge, it was the first report in which the CVD growth of two-dimensional TMDCs has been investigated in-situ by reflectance spectroscopy.

EVANS J S O, PRICE S J, WONG H V, et al.

Kinetic study of the intercalation of cobaltocene by layered metal dichalcogenides with time-resolved in situ X-ray powder diffraction

Journal of the American Chemical Society, 1998, 120(42): 10837.

DOI      URL     [本文引用: 1]

BEALE A M, SANKAR G.

In situ study of the formation of crystalline bismuth molybdate materials under hydrothermal conditions

Chemistry of Materials, 2003, 15(1): 146.

DOI      URL     [本文引用: 1]

ZHOU Y, ANTONOVA E, BENSCH W, et al.

In situ X-ray diffraction study of the hydrothermal crystallization of hierarchical Bi2WO6 nanostructures

Nanoscale, 2010, 2(11): 2412.

DOI      URL     [本文引用: 1]

MA H A, JIA X, CUI Q L, et al.

Crystal structures of C3N6H6 under high pressure

Chemical Physics Letters, 2003, 368(5/6): 668.

DOI      URL     [本文引用: 3]

KIEBACH R, PIENACK N, ORDOLFF M E, et al.

Combined in situ EDXRD/EXAFS investigation of the crystal growth of [Co(C6H18N4)][Sb2S4] under solvothermal conditions: two different reaction pathways leading to the same product

Chemistry of Materials, 2006, 18(5): 1196.

DOI      URL     [本文引用: 1]

SAYERS D E, STERN E A, LYTLE F W.

New technique for investigating noncrystalline structures-Fourier analysis of extended X-ray-absorption fine structure

Physical Review Letters, 1971, 27(18): 1204.

DOI      URL     [本文引用: 1]

TAMURA K, OYANAGI H, KONDO T, et al.

Structural study of electrochemically deposited Cu on p-GaAs(100) in H2SO4 solution by in situ surface-sensitive X-ray absorption fine structure measurements

Journal of Physical Chemistry B, 2000, 104(38): 9017.

DOI      URL     [本文引用: 1]

MUNOZ F F, ACUNA L M, ALBORNOZ C A, et al.

Redox properties of nanostructured lanthanide-doped ceria spheres prepared by microwave assisted hydrothermal homogeneous co-precipitation

Nanoscale, 2015, 7(1): 271.

DOI      PMID      [本文引用: 1]

In this work, nanostructured LnxCe(1-x)O2-δ (Ln: Gd and Pr; x = 0.1 and 0.2) spheres were synthesized by microwave assisted hydrothermal homogeneous co-precipitation and their properties were characterized by synchrotron radiation XRD, X-ray absorption near-edge spectroscopy (XANES) and scanning and high-resolution electron microscopy (SEM and HRTEM). In situ XRD and XANES experiments were carried out under reducing and oxidizing conditions in order to investigate the redox behaviour of these materials. The nanostructured mixed oxide spheres were found to have a cubic crystal structure (Fm3m space group). The spheres were composed of nanoparticles with an average crystallite size of about 10 nm. The Ln(0.1)Ce(0.9)O2-δ compositions exhibited the highest specific surface area (∼ 60 m(2) g(-1)). In situ XRD experiments showed an increase in lattice parameters upon reduction, which was attributed to the reduction of Ce(4+) and Pr(4+) cations to Ce(3+) and Pr(3+), which have larger radii, and to the associated increase in VO concentration. This increase in lattice parameters was considerably more pronounced for PrDC than GDC, and was explained by the considerably larger change in ionic radius for Pr upon reduction. XANES absorption experiments at the Ce and Pr L3-edge showed that the changes observed upon reduction of the Pr-containing samples resulted mostly from the formation of Pr(3+) rather than Ce(3+), and supported the previously reported proposal that Pr(3+) has a stabilizing effect on Ce(4+).

TANG Y Z, ELZINGA E J, LEE Y J, et al.

Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy

Geochimica et Cosmochimica Acta, 2007, 71(6): 1480.

DOI      URL     [本文引用: 1]

ZHANG Y, WANG H Y, MA C Q, et al.

Growth and optical properties of gray-track-resistant KTiOPO4 single crystals

Journal of Crystal Growth, 2015, 412: 67.

DOI      URL     [本文引用: 1]

YAO T, SUN Z H, LI Y Y, et al.

Insights into initial kinetic nucleation of gold nanocrystals

Journal of the American Chemical Society, 2010, 132(22): 7696.

DOI      PMID      [本文引用: 1]

Understanding the initial nucleation mechanism of monodisperse nanocrystals (NCs) during synthesis process is an important prerequisite to control the desired sizes and to manipulate the properties of nanoscale materials. The acquisition of information for the small nanocluster nucleation process, however, still remains challenging. Here, using a continuous-flow in situ X-ray absorption fine structure (XAFS) spectroscopy for time-resolved studies, we have clarified the initial kinetic nucleation of Au clusters under the grain size of 1 nm for the classical Au NCs synthesis via the reduction of AuCl(4)(-) in aqueous solution. The in situ XAFS results present the experimental revelation of the formation of intermediate Cl(3)(-)Au-AuCl(3)(-) dimer and the subsequent higher complexes 'Au(n)Cl(n+x)' in the initial nucleation stage. We propose a kinetic three-step mechanism involving the initial nucleation, slow growth, and eventual coalescence for the Au NCs formation, which may be helpful for the synthesis of metallic nanomaterials.

MORELL J, TEIXEIRA C V, CORNELIUS M, et al.

In situ synchrotron SAXS/XRD study on the formation of ordered mesoscopic hybrid materials with crystal-like walls

Chemistry of Materials, 2004, 16(26): 5564.

DOI      URL     [本文引用: 1]

DU Y, OK K M, O'HARE D.

A kinetic study of the phase conversion of layered cobalt hydroxides

Journal of Materials Chemistry, 2008, 18(37): 4450.

DOI      URL     [本文引用: 1]

BOTS P, BENNING L G, RODRIGUEZ-BLANCO J D, et al.

Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC)

Crystal Growth & Design, 2012, 12(7): 3806.

DOI      URL     [本文引用: 3]

ZHOU C B, LI H F, ZHANG W Y, et al.

Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

Polymer, 2016, 90: 111.

DOI      URL     [本文引用: 1]

CRAVILLON J, SCHRODER C A, NAYUK R, et al.

Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering

Angewandte Chemie International Edition, 2011, 50(35): 8067.

DOI      URL     [本文引用: 1]

FAN W, OGURA M, SANKAR G, et al.

In situ small-angle and wide-angle X-ray scattering investigation on nucleation and crystal growth of nanosized zeolite A

Chemistry of Materials, 2007, 19(8): 1906.

DOI      URL     [本文引用: 1]

BREMHOLM M, FELICISSIMO M, IVERSEN B B.

Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water

Angewandte Chemie International Edition, 2009, 48(26): 4788.

DOI      URL     [本文引用: 1]

CHEETHAM A K, MELLOT C F.

In situ studies of the Sol-Gel synthesis of materials

Chemistry of Materials, 1997, 9(11): 2269.

DOI      URL     [本文引用: 1]

WANG H W, WESOLOWSKI D J, PROFFEN T E, et al.

Structure and stability of SnO2 nanocrystals and surface-bound water species

Journal of the American Chemical Society, 2013, 135(18): 6885.

DOI      URL     [本文引用: 1]

FERNANDEZ-MARTIN C, BRUNO G, CROCHET A, et al.

Nucleation and growth of nanocrystals in glass-ceramics: an in situ SANS perspective

Journal of the American Ceramic Society, 2012, 95(4): 1304.

DOI      URL     [本文引用: 1]

WALTON R I, MILLANGE F, SMITH R I, et al.

Real time observation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction

Journal of the American Chemical Society, 2001, 123(50): 12547.

PMID      [本文引用: 1]

The hydrothermal crystallization of barium titanate, BaTiO3, has been studied in situ by time-resolved powder neutron diffraction methods using the recently developed Oxford/ISIS hydrothermal cell. This technique has allowed the formation of the ferroelectric ceramic to be followed in a noninvasive manner in real time and under genuine reaction conditions. In a first set of experiments, Ba(OD)2-8D2O was reacted with two different titanium sources, either crystalline TiO2 (anatase) or amorphous TiO2-H2O in D2O, at 100-140 degrees C and the reaction studied using the POLARIS time-of-flight neutron powder diffractometer, at the ISIS Facility. In a second series of experiments, the reaction between barium chloride and crystalline TiO2 (anatase) in NaOD/D2O was studied at temperatures between 100 and 200 degrees C and at different deuterioxide concentrations using the constant-wavelength D20 neutron powder diffractometer at the Institut Laue Langevin. Quantitative growth and decay curves were determined from analysis of the integrated intensities of Bragg reflections of starting materials and product phases. In both sets of experiments the rapid dissolution of the barium source was observed, followed by dissolution of the titanium source before the onset of crystallization of barium titanate. Using a nucleation-growth model we are able to simulate the growth curve of barium titanate at three temperatures. Our results indicate the predominance of a homogeneous dissolution-precipitation mechanism for the hydrothermal formation of barium titanate, rather than other possible mechanisms that have been discussed in the literature. Analysis of the line widths of the Bragg reflections in the neutron diffraction data indicates that the particle size of the BaTiO3 product phase prepared from the amorphous TiO2-H2O is smaller than that prepared from crystalline TiO2 (anatase).

GAINES J M, PONZONI C.

An in-situ characterization of II-VI molecular-beam epitaxy

Physica Status Solidi B-Basic Research, 1995, 187(2): 309.

DOI      URL     [本文引用: 1]

SENKER J, SEHNERT J, CORRELL S.

Microscopic description of the polyamorphic phases of triphenyl phosphite by means of multidimensional solid-state NMR Spectroscopy

Journal of the American Chemical Society, 2005, 127(1): 337.

PMID      [本文引用: 1]

The structural properties of a second, apparently amorphous phase (aII) of the molecular glass former triphenyl phosphite were studied by means of multidimensional solid-state NMR spectroscopy and X-ray diffraction. Phase aII was prepared by annealing the supercooled liquid in the temperature range 210 K <or= T(a) <or= 230 K. In addition to 1D (1)H and (31)P spectra and spin-lattice relaxation data, we used (31)P radio-frequency-driven spin-diffusion exchange spectroscopy to analyze the arrangement of neighboring TPP molecules on both a local and intermediate scale. For the first time, our results give a detailed microscopic description of phase aII. For T(a) > 223 K a nano- or microcrystalline material is formed, whereas for T(a) < 223 K phase aII is homogeneous and disordered. Our data strongly suggest that some of the TPP molecules in phase aII tend toward a parallel alignment. The regions, where the molecules preferentially align appear to be spatially separated and consist of only a few molecules. Whereas the mean cubic expansion of an individual region does not change within the experimental error, the percentage of correlated molecules increases with rising T(a). Based on our results, phase aII can consistently be described as a second liquid, where a part of the molecules exhibit structural correlations. The transformation of the supercooled liquid into phase aII is therefore considered as a liquid-liquid phase transition.

ZHU Y Z, DING J L, WANG W J, et al.

Interface diagnostics: in-situ determination of crystal-melt interface shape evolutions via probing growth interface electromotive force

Acta Materialia, 2022, 238: 118242.

DOI      URL     [本文引用: 1]

GRANDJEAN D, BEALE A M, PETUKHOV A V, et al.

Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions

Journal of the American Chemical Society, 2005, 127(41): 14454.

PMID      [本文引用: 1]

The hydrothermal crystallization of CoAPO-5 molecular sieves has been studied using time-resolved in-situ SAXS/WAXS, UV-vis, Raman, and XAS. Data collected during heating to 180 degrees C allowed the observation of different steps occurring during the transformation of the amorphous gel into a crystalline material from a macroscopic and atomic perspective. Raman spectroscopy detected the initial formation of Al-O-P bonds, whereas SAXS showed that these gel particles had a broad size distribution ranging from ca. 7 to 20 nm before crystallization began. WAXS showed that this crystallization was sharp and occurred at around 160 degrees C. Analysis of the crystallization kinetics suggested a one-dimensional growth process. XAS showed that Co(2+) transformed via a two-stage process during heating involving (i) a gradual transformation of octahedral coordination into tetrahedral coordination before the appearance of Bragg peaks corresponding to AFI, suggesting progressive incorporation of Co(2+) into the poorly ordered Al-O-P network up to ca. 150 degrees C, and (ii) a rapid transformation of remaining octahedral Co(2+) at the onset of crystallization. Co(2+) was observed to retard crystallization of AFI but provided valuable information regarding the synthesis process by acting as an internal probe. A three-stage, one-dimensional crystallization mechanism is proposed: (i) an initial reaction between aluminum and phosphate units forming a primary amorphous phase, (ii) progressive condensation of linear Al-O-P chains forming a poorly ordered structure separated by template molecules up to ca. 155 degrees C, and (iii) rapid internal reorganization of the aluminophosphate network leading to crystallization of the AFI crystal structure.

脱炭素社会に向けて新技術! -AI利用で高品質な6インチのSiC結晶成長の開発を圧倒的な開発スピードで実現

[2021-10-25]. https://www.imass.nagoya-u.ac.jp/en/research/20211025_ujihara.html.

URL     [本文引用: 3]

SKUBIC L, SOVDAT J, TERAN N, et al.

Ab initio multiscale process modeling of ethane, propane and butane dehydrogenation reactions: a review

Catalysts, 2020, 10(12): 1405.

DOI      URL     [本文引用: 3]

Olefins are among the most important structural building blocks for a plethora of chemical reaction products, including petrochemicals, biomaterials and pharmaceuticals. An ever-increasing economic demand has urged scientists, engineers and industry to develop novel technical methods for the dehydrogenation of parent alkane molecules. In particular, the catalysis over precious metal or metal oxide catalysts has been put forward as an alternative way route to thermal-, steam- and fluid catalytic cracking (FCC). Multiscale system modeling as a tool to theoretically understand processes has in the past decade period evolved from a rudimentary measurement-complementing approach to a useful engineering environment. Not only can it predict various experimentally obtained parameters, such as conversion, activity, and selectivity, but it can help us to simulate trends, when changing applicative operating conditions, such as surface gas temperature or pressure, or even support us in the search for the type of materials, their geometrical properties and phases for a better functional performance. An overview of the current set state of the art for saturated organic short chain hydrocarbons (ethane, propane and butane) is presented. Studies that combine at least two different dimensional scales, ranging from atomistic-, bridging across mechanistic mesoscale kinetics, towards reactor- or macroscale, are focused on. Insights considering reactivity are compared.

MARTIN R M.

Electronic Structure:Basic Theory and Practical Methods

Cambridge University Press, 2020.

[本文引用: 2]

FREYSOLDT C, GRABOWSKI B, HICKEL T, et al.

First-principles calculations for point defects in solids

Reviews of Modern Physics, 2014, 86(1): 253.

DOI      URL     [本文引用: 1]

CHEN K, LI Y, PENG C, et al.

Microstructure and defect characteristics of lithium niobate with different Li concentrations

Inorganic Chemistry Frontiers, 2021, 8(17): 4006.

DOI      URL     [本文引用: 3]

Li vacancies and Nb antisites are stable point defects in congruent lithium niobate. The intrinsic point defects induce the Li/Nb cation mixing, the formation of temperature-dependent defect microstructures, and disorder within the LiNbO3 lattice frame.

WANG H, TSE J S, TANAKA K, et al.

Superconductive sodalite- like clathrate calcium hydride at high pressures

Proceedings of the National Academy of Sciences, 2012, 109(17): 6463.

DOI      URL     [本文引用: 3]

\n Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H\n 2\n fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH\n 6\n a body-centered cubic structure with hydrogen that forms unusual “sodalite” cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H\n 2\n of electrons donated by Ca forming an “H\n 4\n ” unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn–Teller effect helps to enhance electron–phonon coupling and leads to superconductivity of CaH\n 6\n. A superconducting critical temperature (T\n \n c\n \n ) of 220–235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far.\n

ZHANG S B, WEI S H, ZUNGER.

A intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO

Physical Review B, 2001, 63(7): 075205.

DOI      URL     [本文引用: 2]

JANOTTI A, VAN DE WALLE C G.

Oxygen vacancies in ZnO

Applied Physics Letters, 2005, 87(12): 122102.

DOI      URL     [本文引用: 1]

JANOTTI A, VAN DE WALLE C G.

Native point defects in ZnO

Physical Review B, 2007, 76(16): 165202.

DOI      URL     [本文引用: 1]

FRENKEL D, SMIT B, RATNER M A.

Understanding Molecular Simulation:from Algorithms to Applications

Academic Press San Diego, 1996.

[本文引用: 2]

ALLEN M P, TILDESLEY D J. Computer Simulation of Liquids. Oxford University Press, 2017.

[本文引用: 2]

BAUMGÄRTNER A, BINDER K, HANSEN J P, et al.

Applications of the Monte Carlo method in statistical physics

Springer Science & Business Media: 2013.

[本文引用: 1]

BORN M, GREEN H S.

A General Kinetic Theory of Liquids

CUP Archive: 1949.

[本文引用: 1]

BROUGHTON J Q, GILMER G H, JACKSON K A.

Crystallization rates of a Lennard-Jones liquid

Physical Review Letters, 1982, 49(20): 1496.

DOI      URL     [本文引用: 2]

SUN G, XU J, HARROWELL P.

The mechanism of the ultrafast crystal growth of pure metals from their melts

Nature Materials, 2018, 17(10): 881.

DOI      PMID      [本文引用: 2]

Pure metals can have ultrafast growth rates from their melts, such as a crystal of pure nickel that grows at a rate reaching 70 m s(-1). These extraordinary growth rates suggest that metallic crystals might provide the next generation of phase-change materials. The huge crystal growth rates of metals are the consequence of kinetics without activated control, in sharp contrast to the prediction of the 'classic' theory of crystal growth. While the existence of barrierless growth kinetics is now well established in atomic melts, the physical explanation for the absence of an activation barrier to ordering remains unclear. It is something of a paradox that diffusion in the liquid metal is governed by thermal activation while the movement of the same atoms organizing into a crystal is not. Here we use computer simulations of crystallization in pure metals to explicitly resolve the origin of the barrierless growth kinetics.

GAO Q, AI J D, TANG S X, et al.

Fast crystal growth at ultra-low temperatures

Nature Materials, 2021, 20(10): 1431.

DOI      PMID      [本文引用: 3]

It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control.

DING F, YAKOBSON B I.

Energy-driven kinetic Monte Carlo method and its application in fullerene coalescence

The Journal of Physical Chemistry Letters, 2014, 5(17): 2922.

DOI      URL     [本文引用: 3]

LANDAU L D, LIFSHITZ E M.

Course of Theoretical Physics

Elsevier: 2013.

[本文引用: 1]

HONG Z, VISWANATHAN V.

Phase-field simulations of lithium dendrite growth with open-source software

ACS Energy Letters, 2018, 3(7): 1737.

DOI      URL     [本文引用: 1]

GONG T, CHEN Y, LI S, et al.

Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy

Journal of Materials Science & Technology, 2021, 74: 155.

[本文引用: 3]

LEE H H.

Finite Element Simulations with ANSYS Workbench 2022: Theory, Applications, Case Studies

SDC Publications, 2022.

[本文引用: 1]

LIPCHIN A, BROWN R A.

Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon

Journal of Crystal Growth, 2000, 216(1): 192.

DOI      URL     [本文引用: 1]

/