无机材料学报, 2021, 36(3): 245-256 DOI: 10.15541/jim20200220

综述

高温隔热用微纳陶瓷纤维研究进展

张晓山,1, 王兵1, 吴楠2, 韩成1, 吴纯治1, 王应德,1

1. 国防科技大学 空天科学学院 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073

2. 国防科技大学 空天科学学院 材料科学与工程系, 长沙 410073

Micro-nano Ceramic Fibers for High Temperature Thermal Insulation

ZHANG Xiaoshan,1, WANG Bing1, WU Nan2, HAN Cheng1, WU Chunzhi1, WANG Yingde,1

1. Science and Technology on Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

2. Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

通讯作者: 王应德, 教授. E-mail:wangyingde@nudt.edu.cn

收稿日期: 2020-04-26   修回日期: 2020-06-9   网络出版日期: 2020-09-10

基金资助: 国防基础科研计划.  XXXX2016550C001
国防基础科研计划.  XXXX2017550C001

Corresponding authors: WANG Yingde, professor. E-mail:wangyingde@nudt.edu.cn

Received: 2020-04-26   Revised: 2020-06-9   Online: 2020-09-10

Fund supported: National Defense Basic Research Program.  XXXX2016550C001
National Defense Basic Research Program.  XXXX2017550C001

作者简介 About authors

张晓山(1991-),男,博士研究生.E-mail:zhangxiaoshan15@nudt.edu.cn;
ZHANGXiaoshan(1991-),male,PhDcandidate.E-mail:zhangxiaoshan15@nudt.edu.cn

摘要

陶瓷纤维具有密度低、强度高、耐高温、抗氧化和耐机械震动性能好等优点, 是空天飞行器、核能发电和化工冶金等热防护领域所需的关键高温隔热材料。传统陶瓷纤维直径粗(ϕ>5 μm)、脆性大、热导率高, 在实际隔热领域应用中受到了极大限制。减小纤维直径, 制备微纳陶瓷纤维, 不仅有利于提高纤维力学性能, 还有望改善其高温隔热性能, 近年来引起了研究者的广泛关注。从微纳陶瓷纤维中影响热传输(气体热传导、固体热传导和辐射传热)的本征因素出发, 有针对地进行组成和结构优化, 进而改善其高温隔热性能, 是当前微纳陶瓷隔热纤维研究的重点方向。本文结合国内外研究现状, 在介绍微纳陶瓷纤维隔热机理的基础上, 按照纤维的组成和结构特点将目前微纳陶瓷隔热纤维分为三类, 即微纳陶瓷纤维气凝胶、中空/多孔微纳陶瓷纤维和复合微纳陶瓷纤维。对这三类不同特点的微纳陶瓷隔热纤维最新研究进展进行综述, 并展望了微纳陶瓷隔热纤维的未来发展方向。

关键词: 微纳陶瓷纤维 ; 高温隔热 ; 结构优化 ; 纤维气凝胶 ; 中空纤维 ; 复合纤维 ; 综述

Abstract

Ceramic fiber has the advantages of low density, high strength, high temperature resistance and good mechanical vibration resistance. It is the critical high temperature thermal insulation materials especially in thermal protection fields such as aerospace vehicles, nuclear power plants and chemo-metallurgical industry, etc. The traditional ceramic fiber with large diameter (> 5 μm), high brittleness and high thermal conductivity has been greatly restricted in high temperature thermal insulation fields. In recent years, more and more attention has been paid to the preparation of micro-nano ceramic fibers by decreasing the diameter of fiber, which is not only beneficial to improve the mechanical properties of the fibers, but also to enhance their high temperature thermal insulation properties. Further, by finely regulating the composition and structure of the micro-nano ceramic fibers that intrinsically affecting the heat transfer (heat conduction of gas, heat conduction of solid and radiative heat transfer) mechanism in micro-nano ceramic fibers, the high temperature thermal insulation performance can be effectively improved, which is the current focus of the micro-nano ceramic fibers in high temperature thermal insulation fields. The thermal insulation mechanism of the micro-nano ceramic fibers was firstly introduced. Then, based on the research at home and abroad, this review divides the current micro-nano ceramic fibers into three categories according to the difference of their composition and structure, namely fibers aerogels, hollow/porous fibers and composite fibers. The latest research progress on composition and structure optimization of micro-nano ceramic fibers for high temperature thermal insulation is reviewed, and the future development tendency is prospected.

Keywords: micro-nano ceramic fiber ; high temperature thermal insulation ; structural optimization ; fiber aerogel ; hollow fiber ; composite fiber ; review

PDF (15953KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张晓山, 王兵, 吴楠, 韩成, 吴纯治, 王应德. 高温隔热用微纳陶瓷纤维研究进展. 无机材料学报[J], 2021, 36(3): 245-256 DOI:10.15541/jim20200220

ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, WU Chunzhi, WANG Yingde. Micro-nano Ceramic Fibers for High Temperature Thermal Insulation. Journal of Inorganic Materials[J], 2021, 36(3): 245-256 DOI:10.15541/jim20200220

随着航空航天技术的不断发展, 高超声速飞行器的飞行速度更高(>5 马赫), 在大气层中飞行时间更长, 飞行器迎风面和机翼前缘等部位气动加热严重, 承受的热环境极为恶劣[1,2]。当飞行器以8马赫的速度在大气层中飞行时其头锥处的温度高达1793 ℃, 机翼前缘等部位温度达1455 ℃[3]。为使其内部仪器设备能在合适的温度范围内工作, 必须采用高效的热防护系统。此外, 导弹和战斗机等武器装备也对高性能耐高温隔热材料提出了迫切需求。

气凝胶材料具有较低的密度和热导率, 是目前常用的隔热材料[4,5]。但其力学性能低、脆性大, 且在高温条件下其内部纳米孔结构易坍塌, 难以满足航空航天等领域中瞬间热冲击和长时间承受高温等极端环境应用要求[6]。陶瓷纤维具有耐高温、抗氧化、化学稳定性好和耐机械振动性能好等优点, 既可作为气凝胶材料的增强体和红外遮光剂, 也可单独作为高温隔热材料, 在航空航天、化工冶金和核能发电等领域具有广阔的应用前景[7,8]。相比于传统陶瓷隔热纤维(ϕ≥5 μm), 细化纤维直径制备微纳陶瓷隔热纤维(ϕ<5 μm)不仅有助于降低纤维热导率, 还能改善其力学性能, 近年来受到了广泛研究和关注[9,10,11]。此外, 对微纳陶瓷纤维的组成和结构进行优化, 可进一步改善其隔热性能, 是当前微纳陶瓷隔热纤维研究的重点[12,13,14]。本文结合国内外研究现状, 介绍了微纳陶瓷纤维及其隔热机理。在此基础上, 将微纳陶瓷隔热纤维根据其组成和结构特点分为了微纳陶瓷纤维气凝胶、中空/多孔微纳陶瓷纤维和复合微纳陶瓷纤维三类, 系统综述了这三类纤维的最新研究进展(图1), 并对其存在的问题进行分析总结, 展望了微纳陶瓷隔热纤维未来发展方向。

图1

图1   微纳陶瓷隔热纤维发展趋势示意图

Fig. 1   Schematic of development trend of the micro-nano ceramic fiber


1 微纳陶瓷纤维及其隔热机理

高孔隙率的纤维隔热材料, 通常在大气环境中应用, 纤维之间孔隙是由气体填充(图2(a)Ⅱ)。由于纤维材料内部没有足够的气压差, 且纤维之间的孔隙不贯通, 因而在微纳纤维隔热材料中对流换热很小, 可忽略不计[15,16]。在微纳陶瓷隔热纤维中, 热传输主要包括气体热传导、固体热传导和辐射传热。微纳陶瓷隔热纤维中热传输示意图如图2(a)所示。

图2

图2   微纳陶瓷纤维热传导示意图(a), 不同温度下直径对碳纳米纤维热导率的影响(b)和不同温度条件下不同直径纤维红外透过率(c)[13,21]

Fig. 2   Schematic of micro-nano fiber heat conduction (a), effect of fiber diameter on thermal conductivity of carbon nanofiber at different testing temperatures (b), and transmittance values for fibers with different fiber diameters at different operating temperatures (c)[13,21]


纤维隔热材料中的气体热传导包括两部分, 即孔隙中的气体分子(图2(a)Ⅱ)相互碰撞进行热量传递(气体自身热导率)和气体分子碰撞固体纤维表面(图2(a)Ⅲ)进行的热量传递(气固热导率)。根据库森理论, 有效气体热导率可由式(1)表示[17,18]:

${{\lambda }_{\text{g}}}=\frac{{{\lambda }_{\text{g},0}}}{\theta +2\psi \frac{\beta {{l}_{\text{g},0}}{{f}_{\text{v}}}}{{{P}_{\text{r}}}\varepsilon d}}$

式中, λg,0为气体分子自身热导率, θψβ是与库森数相关的参数, Pr为普朗特数, ε为常数, lg,0为气体分子平均自由程, fv为纤维体积分数, d为纤维直径。

由式(1)可以看出, 通过增加气体分子平均自由程、增加纤维体积分数或减小纤维直径可降低有效气体热导率。其中, 增加气体分子平均自由程可通过降低气体压力或使用平均自由程较大的气体替换空气来实现, 但操作工艺复杂, 且成本较高, 在实际应用中可行度不大。因而, 通过增加纤维体积分数和减小纤维直径是降低气体热导率最简单有效的方法。但纤维体积分数过高也会使纤维之间固体热传导增加。因此在纤维隔热材料设计中应综合考虑, 选取合适的纤维体积分数。

对于无机陶瓷纤维, 固体热传导(图2(a)Ⅰ)主要是通过声子传热。固体中声子的运动性质决定着固体热导率。根据运动理论, 陶瓷纤维的固体热导率可由式(2)表示[16]:

${{\lambda }_{\text{s}}}=\frac{1}{3}{{C}_{\text{s}}}{{\nu }_{\text{ph}}}{{l}_{\text{s}}}$

式中, Cs为单位体积声子的定容比热容, ${{\nu }_{\text{ph}}}$为声子平均速度, ls为声子平均自由程。对于固体材料而言, 单位体积声子的定容比热容即是材料的比热容与密度的乘积, 声子平均速度近似等于声速。

由式(2)可以看出, 材料的固体热导率与声子的平均自由程紧密相关。声子的平均自由程主要受以下几个因素影响: 晶界和相界面对声子的散射、声子与声子自身之间的散射, 以及材料中的缺陷和杂质等对声子的散射[19]。声子的散射作用越强, 声子的平均自由程越小。一般而言, 声子的平均自由程越小, 材料的固体热导率也越低。因此, 对于陶瓷纤维隔热材料, 可通过增加材料中缺陷浓度、杂质含量和晶界数量等手段来减小声子平均自由程, 进而降低固体热导率。

辐射传热是指温度高于绝对零度的物体通过红外辐射线向外进行热量传递。辐射传热主要取决于材料对红外辐射区电磁波的光学响应。纤维材料的辐射热导率可由公式3表示[16]:

${{\lambda }_{\text{r}}}=\frac{16{{k}_{\text{B}}}{{n}^{2}}{{T}^{3}}}{3\rho e}$

式中, kB为斯蒂芬玻尔兹曼常数, n为材料折射率, T为温度, e为消光系数, ρ为材料密度。消光系数是指红外辐射通过材料后因散射和吸收作用而导致的辐射能量的衰减程度。提高纤维的消光系数, 即红外遮蔽性能, 可有效降低辐射热传导。

综上所述, 微纳陶瓷纤维的隔热性能与其组成和结构密切相关。当纤维体密度相同时, 纤维越 细, 纤维间的孔隙尺寸越小, 对气体分子运动的限制作用越大, 则气体热传导越低。同时, 纤维直径减小, 则纤维间的接触点增多, 热量在纤维中传递时经过的路径更为曲折, 遇到的界面屏障增多, 也使得固体热传导减小。因而, 减小纤维直径有助于提高纤维材料隔热性能。Gibson[20]和Wang[21]分别研究了玻璃纤维和碳纤维(图2(b))直径对其热导率的影响。结果均表明, 随纤维直径减小, 其热导率呈下降趋势。此外, Arambakam等[13]通过理论计算表明, 减小纤维直径还有助于降低纤维的红外透过率(图2(c))。尤其是在高温条件下, 微纳纤维具有较低的红外透过率, 辐射热导率较小。

此外, 细化纤维直径还可改善陶瓷纤维的柔性。当纤维直径降低到纳米级时, 尺寸效应能够赋予纤维较佳的柔性[10-11,22]。传统陶瓷纤维直径较粗、脆性大, 在实际使用过程中难以充分填充异形隔热夹层, 其应用受到较大限制[8,23-24]。纤维柔性的提高可使其获得较好的填充贴合性能和折叠性能, 提高其重复利用率, 在隔热领域具有显著优势。进一步, 纤维直径减小, 在纤维内部存在裂纹等缺陷的可能性减小, 有利于提高其强度[25,26]。因此, 减小纤维直径制备微纳陶瓷纤维不仅可以改善其隔热性能, 还有助于提高其柔性和强度, 是当前陶瓷隔热纤维发展的重要方向。

在众多的陶瓷纤维中, 氧化物陶瓷纤维(ZrO2、SiO2和Al2O3等)以其较好的抗氧化性能和较低的热导率成为目前常用的隔热纤维。Si等[27]制备了SiO2纳米纤维, 并通过在先驱体中加入NaCl实现了纤维之间连接, 有效提高了纤维膜的拉伸强度, 制备的SiO2纤维膜具有较低的热导率(0.0058 W∙m-1·K-1)。Mao等[28]制备了不同直径的ZrO2纳米纤维, 可将其用作高温隔热材料。但SiO2和ZrO2纤维经1200 ℃热处理后, 纤维中晶粒长大明显, 使得纤维膜强度和柔性显著下降, 在更高温度应用受限[27,28]。Al2O3纳米纤维以其较好的耐高温性能而备受关注[29,30]。Zhang等[29]制备了由α-Al2O3纳米片沿[0001]晶面堆叠而成纳米纤维, 由于在纳米片之间形成了MgAl2O4结晶抑制剂, 制备的α-Al2O3纳米纤维展现出较好的耐高温性能(1400 ℃), 在高温隔热领域具有较好的应用前景。

近年来, 具有较好耐高温性能的钙钛矿陶瓷纤维也是高温隔热纤维关注的重点。Yuan等[31]率先制备了耐高温性能达1300 ℃的BaZrO3纤维。该课题组又制备了CaZrO3纳米纤维, 该纳米纤维具有较低的热导率(0.413~0.501 W∙m-1·K-1)和较好的耐碱腐蚀和耐高温性能[32]

此外, 具有较高红外反射率的陶瓷纤维也可用作高温隔热材料, 有效降低高温条件下辐射热传导。研究人员利用Y2O3自身高红外反射率的特点, 制备了Y2O3纳米纤维, 该纳米纤维在近红外波段内平均红外反射率高达92%, 在高温条件下隔绝辐射传热具有显著优势[33]

目前, 微纳陶瓷隔热纤维取得了较大发展, 制备了一系列具有较好隔热性能的微纳陶瓷纤维。但当前的微纳陶瓷隔热纤维强度相对较低, 且在高温条件下晶粒长大导致强度下降、脆性增大, 长期工作温度较低。因此, 如何提高微纳陶瓷隔热纤维的强度和耐高温性能是其未来发展中需关注的重点。

2 微纳陶瓷纤维气凝胶

将微纳陶瓷纤维组装成轻质、高孔隙率的纤维气凝胶有助于充分发挥纤维自身柔性和低热导率的特性, 有望克服传统陶瓷隔热纤维脆性大、热导率高等不足, 制备出具有较好力学性能的高效隔热材料, 在高温隔热领域具有较大应用潜力。自东华大学丁彬课题组[34]成功制备出具有良好压缩弹性的SiO2/PAN复合纤维气凝胶以来, 纤维气凝胶引起了学者们的广泛研究。近来, 该课题组以SiO2纳米纤维为基体, 采用硼硅溶胶为粘结剂先驱体, 制备了纤维之间由硼硅酸盐陶瓷连接的SiO2纳米纤维气凝胶(图3(a))。得益于SiO2纳米纤维较低的热导率、较好的柔性和耐高温性能及纤维气凝胶的多孔结构, 该气凝胶表现出了较好的隔热性能(图3(b))和压缩弹性(图3(c))[7]。为进一步降低纤维气凝胶的热导率, 该课题组在纳米纤维气凝胶制备过程中加入了SiO2气凝胶纳米颗粒, 使SiO2气凝胶颗粒均匀分散在纤维之间的孔隙中, 有效降低了纤维气凝胶热导率, 但其压缩弹性不受影响[35,36]。上述纳米纤维气凝胶, 纤维之间均是刚性的陶瓷节点(如硅硼酸盐和SiO2)连接。这使得其在长期使用过程中弹性降低, 脆性增大。为解决这一问题, 该组研究者采用硅溶胶作为纤维之间的节点(图3(d)), 实现了纤维之间的弹性连接, 制备的SiO2纳米纤维气凝胶可以经受一百万次压缩测试而压缩弹性无明显下降, 且能在较宽的温度范围内(-196~1100 ℃)保持优异的压缩弹性(图3(e))。该纤维气凝胶最高使用温度可达1100 ℃, 明显优于其他气凝胶材料(图3(f))[37]。但由于SiO2纤维自身耐高温性能限制(<1200 ℃), SiO2纳米纤维气凝胶不能满足更高温度应用要求。

图3

图3   SiO2和SiC纳米纤维气凝胶[7-8,37]

(a)SEM照片; (b)隔热性能测试红外成像照片; (c)压缩应力应变图; SiO2纳米纤维气凝胶的(d)SEM照片, (e)高温条件下压缩性能测试图和(f)热导率对比图; (g)SiC纳米纤维气凝胶的SEM照片, (h)隔热性能测试光学照片和(i)压缩应力应变曲线

Fig. 3   SiO2 and SiC nanofiber aerogel[7-8,37]

(a,d) SEM images of SiO2 nanofiber aerogel; (b) Infrared thermal image; (c) Compression stress-strain; (e) Compression test under high temperature; (f) Thermal conductivity comparison; (g) SEM image of SiC nanofiber aerogel; (h) Optical photo of thermal insulation performance of SiC nanofiber aerogel; (i) Compression stress-strain of SiC nanofiber aerogel


为进一步提高纤维气凝胶的耐高温性能, SiC和莫来石等具有较好耐高温性能的纤维也被用来制作纤维气凝胶。Su等[8]通过气相反应制备了SiC纳米纤维气凝胶(图3(g))。由于纤维气凝胶高孔隙率的特点及SiC纳米纤维自身较好的柔性和耐高温性能, 该纤维气凝胶表现出了优异的隔热性能(图3(h))和压缩弹性(图3(i))。最近, Xian等[38]制备了耐高温性能可达1400 ℃的莫来石纤维气凝胶, 且具有较低的热导率(0.038~0.062 W·m-1·K-1)。

此外, 具有较好压缩弹性的碳纳米纤维气凝胶也得到了广泛研究[39,40,41]。由于碳材料在有氧气氛中, 超过450 ℃的条件下存在明显的氧化, 碳纳米纤维气凝胶在空气环境中使用温度较低。但其在非氧化环境中使用温度高达2000 ℃, 在超高温隔热领域具有显著优势。

尽管, 目前已制备出了多种微纳陶瓷纤维气凝胶, 纤维材料的隔热性能有了一定提高。但纤维气凝胶内部孔洞尺寸较大, 气体热导率较高。减小其内部孔洞尺寸, 有望进一步提高其隔热性能, 在未来研究中值得关注。此外, 纤维自身的一些不足(如强度低和耐高温性能不佳等), 也是限制纤维气凝胶在高温隔热领域应用的关键问题。

3 中空/多孔微纳陶瓷纤维

3.1 中空微纳陶瓷纤维

在中空纤维中, 固体传热仅能在管壁传输, 因而中空纤维固体热导率较低。此外, 纤维的空心结构还对其内部的气体分子具有限制作用。尤其当中空尺寸小于气体分子的平均自由程时, 气体分子的自由运动被强烈限制, 气体热导率较小[42]。Brendel等[43]通过理论计算表明, 在高温条件下, 中空纤维具有更大的红外辐射线散射截面。这可能是由于中空结构增加了气固相界面, 红外辐射线通过两相界面时发生了较多次数的反射、折射和吸收, 辐射传热减小。中空纤维热传输示意图如图4所示。因而, 相比于实芯纤维, 将纤维设计为中空结构有助于进一步降低其热导率, 提高纤维材料的隔热性能。目前, 制备中空微纳陶瓷隔热纤维的方法主要有模板法和静电纺丝法两种。

图4

图4   中空隔热纤维热传导示意图

Fig. 4   Schematic diagram of heat conduction of hollow fiber


模板法制备中空陶瓷隔热纤维具有设备简单、成本低等优点。南京理工大学王天驰课题组分别采用蚕丝、木棉、白茅和棉花等植物纤维作为模板制备了多种直径的中空ZrO2纤维(图5(a))[44,45,46,47]。相比传统的实芯ZrO2纤维, 不同温度下中空ZrO2纤维均具有较低的热导率(图5(b))。其中, 在900 ℃下中空ZrO2纤维热导率为~0.203 W·m-1·K-1, 比实芯纤维热导率下降了约13%[44]。最近, Xu等[48]制备了中空Al2O3纤维(图5(c)), 该中空纤维泡沫具有较低的密度(0.68 mg·cm-3)和热导率(0.022 W·m-1·K-1, 图5(d))。

图5

图5   中空微纳陶瓷纤维[44,48]

(a)中空ZrO2纤维表面和截面SEM照片; (b)中空ZrO2纤维与传统实芯ZrO2纤维热导率对比; (c)中空Al2O3纤维表面和截面SEM照片; (d)中空Al2O3纤维气凝胶与其他材料热导率对比

Fig. 5   Hollow micro-nano ceramic fiber[44,48]

(a) Surface and cross section SEM images of hollow ZrO2 fiber; (b) Comparison of thermal conductivity between hollow ZrO2 fiber and traditional ZrO2 fiber; (c) Surface and cross section SEM images of hollow Al2O3 fiber; (d) Thermal conductivity comparison among hollow Al2O3 fiber aerogel and other materials


受北极熊中空结构的毛发具有较好的防寒保温性能的启发。Zhan等[49]采用直径较细(~35 nm), 且以具有较好分散性的碲纳米线为模板, 通过水热反应结合高温烧成工艺制备了中空碳纳米纤维(图6(a-b))。研究发现, 这种中空纳米纤维构成的气凝胶表现出了较好的压缩弹性(图6(c))和较低的热导率(图6(d))。但由于碳材料特性的限制, 其在空气中应用温度较低(<450 ℃)。Du等[50]制备了中空SiO2纳米纤维, 由中空SiO2纳米纤维构成的气凝胶在室温下具有较低的热导率(0.030~0.033 W·m-1·K-1)。但由于SiO2材料的红外透过性较强, 该纤维气凝胶在高温条件下辐射热导率较高。

图6

图6   中空碳纳米纤维气凝胶[49]

(a)制备流程示意图; (b)TEM照片; (c)中空碳纳米纤维气凝胶经10000次压缩应力应变曲线及压缩测试图; (d)中空碳纳米纤维气凝胶与其他中空材料热导率比较

Fig. 6   Hollow carbon micro-nano fiber aerogel[49]

(a) Schematic illustration of the fabrication processes; (b) TEM image; (c) Stress-strain curves for 10000 cycles; (d) Thermal conductivity comparison among different hollow-structured thermally insulating materials


静电纺丝法制备中空纤维具有纤维直径小和形貌结构易调控等优点, 是制备微纳中空陶瓷纤维的重要方法。Liu等[51]采用同轴静电纺丝法制备了氮掺杂的中空SiC纤维(图7(a))。研究发现, 纤维是由SiOxCy、SiCxOyNz和自由碳多相组成, 其独特的组成及中空结构使其表现出了优异的隔热性能, 在600 ℃下热导率仅为0.039~0.042 W·m-1·K-1(图7(d))。最近, 本课题组采用微乳液静电纺丝法制备了中空SiC纤维(图7(b))。研究发现, 中空SiC纤维红外消光系数明显高于实芯SiC纤维, 在800 ℃下中空SiC纤维热导率为~0.1049 W·m-1·K-1, 比实芯纤维热导率下降了约71%(图7(e))[52]

图7

图7   中空和多空微纳纤维[51-52,54]

(a)氮掺杂中空SiC纤维SEM照片; (b)中空SiC纤维SEM照片; (c)多孔SiO2-TiO2纤维SEM照片; (d)氮掺杂中空SiC纤维热导率和热扩散系数; (e)中空和实芯SiC纤维热导率; (f)多孔SiO2-ZrO2纤维SEM照片

Fig. 7   Hollow and porous micro-nano fiber[51-52,54]

(a) SEM image of N-doped hollow SiC fiber; (b) SEM image of hollow SiC fiber; (c)SEM image of porous SiO2-TiO2 fiber; (d) Thermal conductivities and thermal diffusivities of N-doped hollow SiC fiber; (e) Thermal conductivities of solid SiC fiber and hollow SiC fiber; (f) SEM image of SiO2-ZrO2 fiber


目前, 采用模板法和静电纺丝法已制备出了多种中空微纳陶瓷隔热纤维, 并取得了较好的隔热效果。但由于纤维的中空结构极大地增加了纤维的比表面积, 使得纤维表面存在缺陷的可能性增加。因而, 目前制备的中空陶瓷纤维强度较低。在未来优化中空纤维隔热性能的同时, 如何有效提高其强度也是需关注的重点。

3.2 多孔微纳陶瓷纤维

相比于实芯和中空纤维, 多孔结构纤维使得固体热传输路径更加曲折、对气体分子的限制作用更大以及对红外辐射线的反射次数更多。因此, 构建多孔结构微纳陶瓷纤维可进一步降低纤维热导率。Gbewonyo等[53]制备了多孔碳纳米纤维, 纤维内部丰富的微孔、介孔和纳米孔结构, 有效降低了其热导率。与实芯碳纳米纤维膜相比, 多孔碳纳米纤维膜热导率降低了近98%。最近, Wang等[54]制备了具有多级孔结构的SiO2-TiO2和SiO2-ZrO2纤维(图7(c,f))。纤维内部大量的孔洞, 有助于降低气体和固体热传导, 并增强对红外辐射线的反射能力, 有望将其应用于高温隔热领域。

最近, 研究人员制备了具有纳米多孔结构的有机气凝胶纤维, 纤维内部丰富的纳米孔结构使其展现出了优异的隔热性能[55,56,57]。受此启发, 进一步调控多孔陶瓷纤维的孔结构, 制备纳米多孔结构的“微纳陶瓷气凝胶纤维”有望显著降低陶瓷纤维热导率, 是未来微纳陶瓷隔热纤维发展的重要方向。但目前尚未有“陶瓷气凝胶纤维”的报道, 这主要是由于其制备困难, 且纤维内部大量的纳米孔结构会对纤维力学性能产生不利影响。

目前, 多孔微纳陶瓷隔热纤维正处于新兴阶段, 制备具有较好力学性能的多孔微纳陶瓷隔热纤维还存在着较大挑战, 是其未来发展中面临的难题。此外, 孔结构与隔热性能之间的构效关系等科学问题还有待进一步研究。且对于多孔纤维的隔热机制研究还不充分, 在未来研究中也需重点关注。

4 复合微纳陶瓷纤维

由普朗克定律可知, 随物体温度升高, 其光谱辐射强度逐渐增强, 辐射传热占比增大。在高温条件下(T>1000 ℃), 黑体辐射波长主要集中在1~ 8 μm的近红外以及中红外波段[58,59]。因而, 理想的高温隔热材料需在此波段内具有较低的红外透过性。但对于绝大多数氧化物陶瓷纤维(ZrO2、SiO2和Al2O3等), 其在1~8 μm波段内红外透过率较高[43,60-61]。因而, 其在高温条件下的热导率较高。如何有效降低氧化物陶瓷纤维的红外透过性, 是提高其高温隔热性能的关键。

当红外辐射线(总能量EL)传递到纤维表面时会发生反射(反射能量ER)、吸收(吸收能量EA)和透过(透过能量ET), 如图8所示。由能量守恒定律可知, 只有增加对红外辐射线的反射和吸收才能降低透过的红外辐射能量。目前, 降低纤维的红外透过性主要有两种方法: 1)在纤维表面构筑高反射率涂层, 提高纤维对红外辐射线的反射能力; 2)在纤维中复合具有较高红外反射和吸收能力的遮光剂相。

图8

图8   红外辐射线在纤维中传输示意图

Fig. 8   Schematic of infrared radiation transmission in the fiber


4.1 高反射涂层复合微纳陶瓷纤维

目前, 在纤维表面构筑高反射率的涂层种类主要有TiO2、In2O3、CeO2和SiC等[62,63,64,65,66,67,68], 如表1所示。Hass等[64]在Al2O3纤维表面分别制备了TiO2、TiO2/SiO2/TiO2和TiO2-Pt纳米颗粒复合薄膜。结果表明, 在纤维表面构筑TiO2/SiO2/TiO2多层反射膜, 具有较好的红外反射性能, 有效降低了红外透过性。与无涂层纤维相比, 其消光系数提高了近40%。此外, 在SiO2纤维表面制备掺锡氧化铟(ITO)反射膜和ITO/Ag/ITO多层反射膜也可有效降低纤维的红外透过率[59,65]。Gan等[66]采用水热反应法在ZrO2纤维表面制备了具有较高反射率的CeO2涂层(图9(a))。

表1   高反射率涂层纤维制备方法及涂层种类

Table 1  Preparation method and coating types of high-reflectivity coated fiber

FiberMethodInfrared reflectance layerCoating thickness/μmRef.
Al2O3Dip-coatingTiO2, TiO2/SiO2/TiO2, TiO2-Pt-[64]
SiO2Dip-coatingITO, ITO/Ag/ITO~0.2[60,65]
ZrO2HydrothermalCeO252-214[66]
MulliteHydrothermalTiO2-[67]
ZrO2HydrothermalTiO289-236[68]
MulliteDip-coatingSiC~0.8[69]

新窗口打开| 下载CSV


图9

图9   高反射率涂层纤维[66-67,69]

(a)CeO2/ZrO2纤维SEM照片; (b)TiO2/莫来石纤维SEM照片; (c)SiC/莫来石纤维表面SEM照片; (d)ZrO2纤维和CeO2/ZrO2纤维的比消光系数对比; (e)莫来石纤维和TiO2/莫来石纤维比消光系数对比; (f)莫来石纤维和SiC/莫来石纤维增强气凝胶复合材料热导率对比

Fig. 9   High-reflectivity coated fiber[66-67,69]

(a) SEM image of ZrO2 fiber with CeO2 coating; (b) SEM image of mullite fiber with TiO2 coating; (c) SEM image of mullite fiber with SiC coating; (d) Specific extinction coefficients comparison of ZrO2 fiber and CeO2/ZrO2 fiber; (e) Specific extinction coefficients comparison of mullite fiber and TiO2/mullite fiber; (f) Thermal conductivity comparison of mullite fiber and SiC/mullite fiber reinforced aerogel composite


结果表明, 在2.5~10 μm波长范围内, 涂层纤维平均红外消光系数比无涂层纤维提高了1倍(图9(d))。Yang等[67]采用溶剂热法在莫来石纤维表面制备了反射率更高的TiO2纳米棒涂层(图9(b))。结果表明, 在3~6 μm的波长范围内, 涂层纤维有效消光系数比无涂层纤维提高了2~4倍(图9(e))。最近, Ma等[68]在ZrO2纤维表面制备了TiO2涂层。虽然, ZrO2纤维表面制备TiO2涂层提高了对红外辐射线的反射能力, 但由于TiO2自身较高的固体热导率使纤维之间固体热传导增强, 反而导致涂层纤维热导率比无涂层纤维更高。

Xu等[69]在莫来石纤维表面制备了SiC涂层 (图9(c))。研究发现, 莫来石纤维表面的SiC涂层使得纤维红外消光系数增加。由纤维增强的Al2O3-SiO2气凝胶复合材料热导率测试结果可以看出, 涂层纤维制备的气凝胶复合材料热导率较低(图9(f))。由于SiC自身固体热导率较高, 使得纤维固体热传导增加, 因而制备涂层后纤维隔热性能提高并不明显。

目前, 通过在纤维表面构筑高反射涂层, 使得氧化物陶瓷纤维的红外遮蔽性能有了一定提高。但由于部分高反射率材料, 其自身固体热导率较高(如TiO2和SiC等)。将其作为红外反射涂层后, 会使纤维之间的固体热传导增加, 综合热导率降低不明显或反而增大。因此, 在选择反射涂层时也需考虑其固体热导率, 尽量选用固体热导率较低但反射率较高的材料作为反射涂层。此外, 由于涂层与纤维之间结合较弱, 在长期使用过程中涂层易脱落, 这也是未来涂层纤维发展需解决的问题。

4.2 复相微纳陶瓷纤维

除了在纤维表面构筑高反射涂层外, 将具有低固体热导率和高红外遮蔽性能的材料复合, 设计复相微纳陶瓷纤维, 有望制备出兼具低固体热导率和高红外遮蔽性能的新型微纳陶瓷隔热纤维。目前, 制备的复相微纳陶瓷纤维主要有两种, 两相复合纤维和多元均相复合纤维。前期, 本课题组[70]通过控制熟化工艺, 制备了表面富ZrO2层的ZrO2/SiC两相复合纤维(图10(a,b))。纤维表面的ZrO2层具有较低的固体热导率, 有助于降低纤维之间固体热传导。同时, 芯部的SiC具有较好的红外遮蔽性能, 能有效降低辐射热传输。制备的ZrO2/SiC复相纤维是较理想的高温隔热材料[70]。近期, 本课题组设计制备了多元复相SiZrOC纳米纤维(图10(c))[14]。研究发现, 纤维是由SiC、SiO2、自由碳和ZrO2多相组成。纤维内部的复杂多相结构使其内部存在大量相界面, 增加了声子-界面散射, 纤维固体热导率较低。同时, 纤维内部的SiC和自由碳具有较高的红外反射和吸收能力, 有效降低了辐射热传导, 因而制备的SiZrOC纤维在高温条件下具有较低的热导率(图10(d)), 纤维隔热机理示意图如图10(e)所示。因此, 设计复相微纳陶瓷隔热纤维有望制备出高效隔热纤维, 这也是未来微纳陶瓷隔热纤维发展的重要方向之一。

图10

图10   复相微纳陶瓷纤维[14,70]

(a)ZrO2/SiC纤维制备示意图; (b) ZrO2/SiC纤维TEM照片; (c) SiZrOC纤维SEM照片; (d) SiZrOC纤维热导率对比; (e) SiZrOC纤维隔热机理示意图

Fig. 10   Composite micro-nano ceramic fiber[14,70]

(a) Schematic illustration of the preparation of ZrO2/SiC fiber; (b) TEM images of ZrO2/SiC fiber; (c) SEM images of SiZrOC fiber; (d) Thermal conductivity comparison of SiZrOC fiber with other ceramic fibers; (e) Schematic illustration of thermal insulation mechanisms of SiZrOC fibers


通过在纤维表面构筑高反射涂层或在纤维内部复合遮光剂相, 有效提高了微纳陶瓷纤维的高温隔热性能。相比于传统陶瓷纤维和气凝胶隔热材料, 复合微纳陶瓷纤维较佳的力学性能和优异的红外遮蔽性能, 使其在高温隔热领域具有显著优势。

5 总结及展望

微纳陶瓷隔热纤维以其较佳的耐高温和隔热性能, 在高温隔热领域具有广阔的应用前景。通过优化纤维的组成和结构可进一步改善其隔热性能, 是当前微纳陶瓷隔热纤维研究的重点。尽管目前微纳 陶瓷纤维的隔热性能有了一定提高, 但仍面临诸多挑战:

1)目前制备的微纳陶瓷隔热纤维强度相对较 低, 尤其是对于中空和多孔结构纤维。如何有效提高纤维的强度是未来微纳陶瓷隔热纤维发展需关注的重点。

2)对于广泛应用的氧化物陶瓷纤维, 其在高温条件下晶粒长大, 致使纤维易脆, 且强度下降显著。因此, 在优化纤维隔热性能的同时, 提高其耐高温性能也是未来必须解决的问题。

3)多孔微纳陶瓷隔热纤维处于新兴阶段, 结合理论计算和实验手段, 阐明其高温隔热机制, 对于指导纤维的结构设计和提高其隔热性能具有重要的理论指导意义。

4)目前, 制备微纳陶瓷隔热纤维生产效率较低, 难以满足实际工业应用需求。开发高效的微纳陶瓷隔热纤维规模化生产方法是推动其在隔热领域广泛应用的关键问题。

参考文献

CHEN Y F, HONG C Q, HU C L, et al.

Ceramic-based thermal protection materials for aerospace vehicle

Advanced Ceramics, 2017,38(5):311-390.

[本文引用: 1]

BEHRENS B, MULLER M.

Technologies for thermal protection systems applied on reusable launcher

Acta Astronautica, 2004,55(3-9):529-536

[本文引用: 1]

WANG C A, LANG Y, HU L F, et al.

Research progress on lightweight and high strength heat-insulating porous ceramics

Journal of Ceramics, 2017,38(6):287-296.

[本文引用: 1]

TERESA L, MARIA T P A, LUISA D.

Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications

Journal of Materials Chemistry A, 2019,7:22768-22802.

[本文引用: 1]

LUO Y, JIANG Y G, FENG J Z, et al.

Progress on the preparation of SiO2 aerogel composites by ambient pressure drying technique

Materials Review, 2018,32(5):780-787.

[本文引用: 1]

XU X, ZHANG Q, HAO M, et al.

Double-negative-index ceramic aerogels for thermal superinsulation

Science, 2019,363(6428):723-727.

DOI      URL     PMID      [本文引用: 1]

Ceramic aerogels are attractive for thermal insulation but plagued by poor mechanical stability and degradation under thermal shock. In this study, we designed and synthesized hyperbolic architectured ceramic aerogels with nanolayered double-pane walls with a negative Poisson's ratio (-0.25) and a negative linear thermal expansion coefficient (-1.8 x 10(-6) per degrees C). Our aerogels display robust mechanical and thermal stability and feature ultralow densities down to ~0.1 milligram per cubic centimeter, superelasticity up to 95%, and near-zero strength loss after sharp thermal shocks (275 degrees C per second) or intense thermal stress at 1400 degrees C, as well as ultralow thermal conductivity in vacuum [~2.4 milliwatts per meter-kelvin (mW/m.K)] and in air (~20 mW/m.K). This robust material system is ideal for thermal superinsulation under extreme conditions, such as those encountered by spacecraft.

SI Y, WANG X, DOU L, et al.

Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity

Science Advances, 2018, 4(4): eaas8925.

URL     PMID      [本文引用: 4]

SU L, WANG H, NIU M, et al.

Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel

ACS Nano, 2018,12(4):3103-3111.

DOI      URL     PMID      [本文引用: 5]

Ultralight ceramic aerogels with the property combination of recoverable compressibility and excellent high-temperature stability are attractive for use in harsh environments. However, conventional ceramic aerogels are usually constructed by oxide ceramic nanoparticles, and their practical applications have always been limited by the brittle nature of ceramics and volume shrinkage at high temperature. Silicon carbide (SiC) nanowire offers the integrated properties of elasticity and flexibility of one-dimensional (1D) nanomaterials and superior high-temperature thermal and chemical stability of SiC ceramics, which makes it a promising building block for compressible ceramic nanowire aerogels (NWAs). Here, we report the fabrication and properties of a highly porous three-dimensional (3D) SiC NWA assembled by a large number of interweaving 3C-SiC nanowires of 20-50 nm diameter and tens to hundreds of micrometers in length. The SiC NWA possesses ultralow density ( approximately 5 mg cm(-3)), excellent mechanical properties of large recoverable compression strain (>70%) and fatigue resistance, refractory property, oxidation and high-temperature resistance, and thermal insulating property (0.026 W m(-1) K(-1) at room temperature in N2). When used as absorbents, the SiC NWAs exhibit an adsorption selectivity of low-viscosity organic solvents with high absorption capacity (130-237 g g(-1)). The successful fabrication of such an attractive material may provide promising perspectives to the design and fabrication of other compressible and multifunctional ceramic NWAs.

SABETZADEH N, BAHRAMBEYGI H, RABBI A, et al.

Thermal conductivity of polyacrylonitrile nanofibre web in various nanofibre diameters and surface densities

Micro & Nano Letters, 2012,7(7):662-666.

[本文引用: 1]

YAN J, HAN Y, XIA S, et al.

Polymer template synthesis of flexible BaTiO3 Crystal nanofibers

Advanced Functional Materials, 2019,29(51):1907919.

[本文引用: 2]

YAN J, ZHAO Y, WANG X, et al.

Polymer template synthesis of soft, light, and robust oxide ceramic films

iScience, 2019,15:185-195.

DOI      URL     PMID      [本文引用: 2]

Oxide ceramic materials underpin a wide variety of technologies. However, the inherent fragility of these materials limits their use in emerging fields like wearable electronics and soft energy storage devices. Here, we develop a sol-gel electrospinning technique followed by calcination to create a range of oxide ceramic nanofiber films that exhibit significant softness without fragility after various deformations. This approach causes the ceramic crystals to fuse together at a low temperature during their growth within the polymer nanofiber templates. All the synthesized ceramic films, from SiO2 to BaTiO3, Li0.33La0.56TiO3, and Li7La3Zr2O12, have silk-like softness of <31 mN, low density of <0.36 g/cm(3) and robust fire resistance to 1,000 degrees C. Fabricated separators based on these films display large electrolyte uptakes of >900% and high thermal insulation performance, enhancing the rate capability and safety of lithium batteries. The reported method allows scalable synthesis of soft oxide ceramic films with properties appealing for applications.

ARAMBAKAM R, TAFRESHI H V, POURDEYHIMI B.

A simple simulation method for designing fibrous insulation materials

Materials & Design, 2013,44:99-106.

[本文引用: 1]

ARAMBAKAM R, TAFRESHI H V, POURDEYHIMI B.

Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations

International Journal of Heat and Mass Transfer, 2013,64:1109-1117.

[本文引用: 4]

ZHANG X S, WANG B, WU N, et al.

Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature

Journal of the European Ceramic Society, 2020,40(5):1877-1885.

[本文引用: 4]

DARYABEUGI K, CUNNINGTON G R, KNUTSON J R.

Heat transfer modeling for rigid high-temperature fibrous insulation

Journal of Thermophysics and Heat Transfer, 2013,27(3):414-421.

[本文引用: 1]

HU F, WU S, SUN Y.

Hollow structured materials for thermal insulation

Advanced Materials, 2019,31(38):1801001.

[本文引用: 3]

MACHADO H A.

Modeling heat transfer with micro-scale natural convection in fibrous insulation

Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2014,36(4):847-857.

[本文引用: 1]

DARYABEUGI K, CUNNINGTON G R, KNUTSON J R.

Combined heat transfer in high-porosity high-temperature fibrous insulation: theory and experimental validation

Journal of Thermophysics and Heat Transfer, 2011,25(4):536-546.

[本文引用: 1]

SHIN S, WANG Q, LUO J, et al.

Advanced materials for high- temperature thermal transport

Advanced Functional Materials, 2020,30:1904815.

[本文引用: 1]

GIBSON P W, LEE C, KO F, et al.

Application of nanofiber technology to nonwoven thermal insulation

Journal of Engineered Fibers and Fabrics, 2007,2(2):32-40.

[本文引用: 1]

WANG B, WANG Y D.

Effect of fiber diameter on thermal conductivity of the electrospun carbon nanofiber mats

Advanced Materials Research, 2011,332:672-677.

[本文引用: 3]

YAN J, ZHANG Y, ZHAO Y, et al.

Transformation of oxide ceramic textiles from insulation to conduction at room temperature

Science Advances, 2020, 6(6): eaay8538.

[本文引用: 1]

ZHU W, GUO A, XUE Y, et al.

Mechanical evaluations of mullite fibrous ceramics processed by filtration and in situ pyrolysis of organic precursor

Journal of the European Ceramic Society, 2019,39(4):1329-1335.

[本文引用: 1]

HE F, LI W, ZKOU L, et al.

Preparation and characterization of the three-dimensional network mullite porous fibrous materials by pressure and freeze-casting method

Ceramics International, 2019,45(3):3954-3960.

[本文引用: 1]

XUE J, WU T, DAI Y, et al.

Electrospinning and electrospun nanofibers: methods, materials, and applications

Chemical Reviews, 2019,119(8):5298-5415.

DOI      URL     PMID      [本文引用: 1]

Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as

WU N, WANG B, WANG Y D.

Enhanced mechanical properties of amorphous SiOC nanofibrous membrane through in situ embedding nanoparticles

Journal of the American Ceramic Society, 2018,101(10):4763-4772.

[本文引用: 1]

SI Y, MAO X, ZHENG H, et al.

Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation

RSC Advances, 2015,5(8):6027-6032.

[本文引用: 2]

MAO X, BAI Y, YU J, et al.

Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration

Journal of the American Ceramic Society, 2016,99(8):2760-2768.

[本文引用: 2]

ZHANG P, CHEN D, JIAO X.

Fabrication of flexible α-alumina fibers composed of nanosheets

European Journal of Inorganic Chemistry, 2012,2012(26):4167-4173.

[本文引用: 2]

LI W, ZHAO X M, WANG Y F, et al.

Fabrication and mechanical properties of flexible gamma-Al2O3 nanofibrous membranes

Chemical Journal of Chinese Universities, 2017,38(6):915-921.

[本文引用: 1]

YUAN K, WANG X, LIU H, et al.

Formation of barium zirconate fibers for high-temperature thermal insulation applications

Journal of the American Ceramic Society, 2016,99(9):2913-2919.

[本文引用: 1]

SHI S, YUAN K, XU C, et al.

Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber

Ceramics International, 2018,44(12):14013-14019.

[本文引用: 1]

XIE Y, WANG L, LIU B, et al.

Flexible, controllable, and high-strength near-infrared reflective Y2O3 nanofiber membrane by electrospinning a polyacetylacetone-yttrium precursor

Materials & Design, 2018,160:918-925.

[本文引用: 1]

SI Y, YU J, TANG X, et al.

Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality

Nature Communications, 2014,5(1):1-9.

[本文引用: 1]

DOU L, CHENG X, ZHANG X, et al.

Temperature-invariant superelastic, fatigue resistant, and binary-network structured silica nanofibrous aerogels for thermal superinsulation

Journal of Materials Chemistry A, 2020,32(2):1904331.

[本文引用: 1]

DOU L, ZHANG X, CHENG X, et al.

Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation

ACS Applied Materials & Interfaces, 2019,11(32):29056-29064.

DOI      URL     PMID      [本文引用: 1]

Silica aerogels are attractive for thermal insulation due to their low thermal conductivity and good heat resistance performance. However, the fabrication of silica aerogels with temperature-invariant superelasticity and ultralow thermal conductivity has remained extremely challenging. Herein, we designed and synthesized a hierarchical cellular structured silica nanofibrous aerogel by using electrospun SiO2 nanofibers (SNFs) and SiO2 nanoparticle aerogels (SNAs) as the matrix and SiO2 sol as the high-temperature nanoglue. This pathway leads to the intrinsically random deposited SNFs assembling into a fibrous cellular structure, and the SNAs are evenly distributed on the fibrous cell wall. The unique hierarchical cellular structure of the ceramic nanofibrous aerogels endows it with integrated performances of the ultralow density of approximately 0.2 mg cm(-3), negative Poisson's ratio, ultralow thermal conductivity (23.27 mW m(-1) K(-1)), temperature-invariant superelasticity from -196 to 1100 degrees C, and editable shapes on a large scale. These favorable multifeatures present the aerogels ideal for thermal insulation in industrial, aerospace, and even extreme environmental conditions.

WANG F, DOU L, DAI J, et al.

In situ synthesis of biomimetic silica nanofibrous aerogels with temperature-invariant superelasticity over one million compressions

Angewandte Chemie International Edition, 2020,59(21):8285-8292.

DOI      URL     PMID      [本文引用: 3]

Resilient and compressible three-dimensional nanomaterials comprising polymers, carbon, and metals have been prepared in diverse forms. However, the creation of thermostable elastic ceramic aerogels remains an enormous challenge. We demonstrate an in situ synthesis strategy to develop biomimetic silica nanofibrous (SNF) aerogels with superelasticity by integrating flexible electrospun silica nanofibers and rubber-like Si-O-Si bonding networks. The stable bonding structure among nanofibers is in situ constructed along with a fibrous freeze-shaping process. The resultant SNF aerogels exhibit integrated properties of ultralow density (>0.25 mg cm(-3) ), temperature-invariant superelasticity up to 1100 degrees C, and robust fatigue resistance over one million compressions. The ceramic nature also endows the aerogels with fire resistance and ultralow thermal conductivity. The successful synthesis of the SNF aerogels opens new pathways for the design of superelastic ceramic aerogels in a structurally adaptive and scalable form.

XIAN L, ZHANG Y, WU Y, et al.

Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors

Ceramics International, 2020,46(2):1869-1875.

[本文引用: 1]

YU Z L, QIN B, MA Z Y, et al.

Superelastic hard carbon nanofiber aerogels

Advanced Materials, 2019,31(23):1900651.

[本文引用: 1]

LI C, DING Y W, HU B C, et al.

Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels

Advanced Materials, 2020,32(2):1904331.

[本文引用: 1]

ZHANG J, LI B, LI L, et al.

Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose

Journal of Materials Chemistry A, 2016,4(6):2069-2074.

[本文引用: 1]

RUCKDESCHEL P, PHILIPP A, RETSCH M.

Understanding thermal insulation in porous, particulate materials

Advanced Functional Materials, 2017,27(38):1702256.

[本文引用: 1]

BRENDEL H, SEIFERT G, RARTHER F.

Heat transfer properties of hollow-fiber insulation materials at high temperatures

Journal of Thermophysics and Heat Transfer, 2017,31(2):463-472.

[本文引用: 2]

WANG T C, ZHANG Z, DAI C, et al.

Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template

Ceramics International, 2019,45(6):7120-7126.

[本文引用: 4]

WANG T C, KONG S, CHANG L, et al.

Preparation and heat-insulating property of the bio-inspired ZrO2 fibers based on the silk template

Ceramics International, 2012,38(8):6783-6788.

DOI      URL     [本文引用: 1]

Natural silk fibers were used as the template to prepare biomorphic ZrO2 fibers. Silk fibers were first immersed into a Zr(NO3)(4) solution and then sintered in air at high temperatures to produce the final ZrO2 fibers. Their microstructures, phases, synthesis process, infrared absorption spectra and thermal conductivity were analyzed. The results show that these synthesized fibers retained the morphologies of silk faithfully. These ZrO2 fibers also obtained the ability of absorbing infrared from the silk, so that they possessed better heat-insulating property than the traditional ZrO2 fibers. (c) 2012 Elsevier Ltd and Techna Group S.r.l.

WANG T C, YU Q, KONG J, et al.

Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template

Ceramics International, 2017,43(12):9296-9302.

DOI      URL     [本文引用: 1]

WANG T C, YU Q, KONG J.

Preparation and heat-insulating properties of biomorphic ZrO2 hollow fibers derived from a cotton template

International Journal of Applied Ceramic Technology, 2018,15(2):472-478.

[本文引用: 1]

XU C, WANG H, SONG J, et al.

Ultralight and resilient Al2O3 nanotube aerogels with low thermal conductivity

Journal of the American Ceramic Society, 2018,101(4):1677-1683.

[本文引用: 3]

ZHAN H J, WU K J, HU Y L, et al.

Biomimetic carbon tube aerogel enables super-elasticity and thermal insulation

Chem, 2019,5(7):1871-1882.

DOI      URL     [本文引用: 3]

DU A, WANG H, ZHOU B, et al.

Multifunctional silica nanotube aerogels inspired by polar bear hair for light management and thermal insulation

Chemistry of Materials, 2018,30(19):6849-6857.

DOI      URL     [本文引用: 1]

LIU Y, LIU Y, CHOI W C, et al.

Highly flexible, erosion resistant and nitrogen doped hollow SiC fibrous mats for high temperature thermal insulators

Journal of Materials Chemistry A, 2017,5(6):2664-2672.

DOI      URL     [本文引用: 3]

TIAN Q, WU N, WANG B, et al.

Fabrication of hollow SiC ultrafine fibers by single-nozzle electrospinning for high-temperature thermal insulation application

Materials Letters, 2019,239:109-112.

DOI      URL     [本文引用: 3]

GBEWONYO S, CARPENTER A W, GAUSE C B, et al.

Low thermal conductivity carbon fibrous composite nanomaterial enabled by multi-scale porous structure

Materials & Design, 2017,134:218-225.

[本文引用: 1]

WANG Y D, HUANG H, ZHAO Y, et al.

Self-assembly of ultralight and compressible inorganic sponges with hierarchical porosity by electrospinning

Ceramics International, 2020,46(1):768-774.

[本文引用: 3]

LIU Z, LYU J, FANG D, et al.

Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments

ACS Nano, 2019,13(5):5703-5711.

DOI      URL     PMID      [本文引用: 1]

Aerogel with low density, high porosity, and large surface area is a promising structure for the next generation of high-performance thermal insulation fibers and textiles. However, aerogel fibers suffer from weak mechanical properties or complex fabricating processes. Herein, a facile wet-spinning approach for fabricating nanofibrous Kevlar (KNF) aerogel threads ( i.e., aerogel fibers) with high thermal insulation under extreme environments is demonstrated. The aerogel fibers made from nanofibrous Kevlar render a high specific surface area (240 m(2)/g) and wide-temperature thermal stability. The flexible and strong KNF aerogel fibers are woven into textiles to illustrate the excellent thermal insulation property under extreme temperature (-196 or +300 degrees C) and at room temperature. COMSOL simulation is applied to calculate the thermal conductivity of a single aerogel fiber and find an effective way to improve the thermal insulation property of the aerogel fiber. Furthermore, a series of functionalized fibers or textiles based on KNF aerogel fibers, such as phase-change fibers, conductive fibers, and hydrophobic textiles, have been prepared. Such KNF aerogel fibers represent a promising direction for the next generation of high-performance fibrous thermal-insulation materials.

ZHOU J, HSIEH Y L.

Nanocellulose aerogel-based porous coaxial fibers for thermal insulation

Nano Energy, 2020,68:104305.

[本文引用: 1]

YANG H, WANG Z, LIU Z, et al.

Continuous, strong, porous silk firoin-based aerogel fibers toward textile thermal insulation

Polymers, 2019,11(11):1899.

DOI      URL     [本文引用: 1]

YANG J, WU H, WANG M, et al.

Prediction and optimization of radiative thermal properties of ultrafine fibrous insulations

Applied Thermal Engineering, 2016,104:394-402.

DOI      URL     [本文引用: 1]

YANG L L, GE D, WEI H, et al.

Morphology and characterization of ITO-Ag-ITO films on fibers by layer-by-layer method

Applied Surface Science, 2009,255(19):8197-8201.

[本文引用: 2]

WANG X D, SUN D, DUAN Y Y, et al.

Radiative characteristics of opacifier-loaded silica aerogel composites

Journal of Non-crystalline Solids, 2013,375:31-39.

[本文引用: 1]

LEE S C, CUNNINGTON G R.

Conduction and radiation heat transfer in high-porosity fiber thermal insulation

Journal of Thermophysics and Heat Transfer, 2000,14(2):121-136.

DOI      URL     [本文引用: 1]

TONG T W, SWATHI P S, CUNNINGTON JR G R.

Examination of the radiative properties of coated silica fibers

Journal of Thermal Insulation, 1987,11(1):7-31.

DOI      URL     [本文引用: 1]

TONG T W, SWATHI P S, CUNNINGTON JR G R.

Reduction of radiative heat transfer in thermal insulations by use of dielectric coated fibers

International Communications in Heat and Mass Transfer, 1989,16(6):851-860.

[本文引用: 1]

HASS D D, PRASDA B D, GLASS D E, et al.

Reflective Coating on Fibrous Insulation for Reduced Heat Transfer

NASA Contractor Report 201733, 1997.

[本文引用: 2]

YANG L L, HE X, HE F.

ITO coated quartz fibers for heat radiative applications

Materials Letters, 2008,62(30):4539-4541.

DOI      URL     [本文引用: 2]

GAN X, YU Z, YUAN K, et al.

Preparation of a CeO2-nanoparticle thermal radiation shield coating on ZrO2 fibers via a hydrothermal method

Ceramics International, 2017,43(16):14183-14191.

DOI      URL     [本文引用: 4]

YANG J, ZHANG Y, HONG Z, et al.

Preparations of TiO2 nanocrystal coating layers with various morphologies on mullite fibers for infrared opacifier application

Thin Solid Films, 2012,520(7):2651-2655.

DOI      URL     [本文引用: 4]

TiO2 nanorods coatings (TONC) were prepared on the surface of Mullite fibers by seed-hydrothermal method, which were designed as infrared pacifier. The influences of different tetrabutyl-titanate amount on the TONC morphologies, crystalline and optical properties were investigated. Effective specific extinction (e*) was used to characterize their masking ability. The TONC morphologies could be adjusted from nanoparticles to nanorods, which had direct influence on their optical properties. In the 3 mu m-6 mu m range of infrared light, e* of TONC could be improved up to 2-4 folds compared with that of Mullite fibers. Present study indicated TONC is a promising infrared opacifier. Crown Copyright (C) 2011 Published by Elsevier B.V.

MA D, ZHU L, LIU B.

Hydrothermally grown uniform TiO2 coatings on ZrO2 fibers and their infrared reflective and thermal conductive properties

Ceramics International, 2020,46(3):3400-3405.

DOI      URL     [本文引用: 2]

XU L, JIANG Y, FENG J, et al.

Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations

Ceramics International, 2015,41(1):437-442.

[本文引用: 3]

WANG Y D, HAN C, ZHENG D, et al.

Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition

Journal of Materials Chemistry A, 2014,2(25):9607-9612.

DOI      URL     [本文引用: 4]

Novel ultrafine ZrO2/SiC fibers with a radial gradient composition were prepared by a simple electrospinning technique combined with subsequent thermal treatment. The as-prepared ZrO2/SiC fibers were analyzed by a combination of characterizations. It was found that the content of Zr was gradually reduced from the surface to the inside of the ZrO2/SiC fiber. The gradient composition was formed in situ during maturation rather than a subsequent pyrolysis process. The ZrO2/SiC fibers with a gradient composition and different crystalline structures were obtained by pyrolysis in Ar at different temperatures. The gradient ZrO2 composition endows the fabricated fibers with better high-temperature stability (>1800 degrees C) and much superior erosion resistance over normal SIC fibers and ZrO2/SiC composite fibers without gradient composition. Combining the low thermal conductance of ZrO2 with the excellent infrared heat radiation interference ability of SIC, the radial gradient fibers may have potential applications in thermal insulation systems and some other rigorous environments.

/