无机材料学报  2016 , 31 (11): 1157-1165 https://doi.org/10.15541/jim20160119

Orginal Article

连续SiC纤维和SiCf/SiC复合材料的研究进展

袁钦, 宋永才

国防科学技术大学 新型陶瓷纤维及其复合材料重点实验室, 长沙410073

Research and Development of Continuous SiC Fibers and SiCf/SiC Composities

YUAN Qin, SONG Yong-Cai

Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China

中图分类号:  TQ343

文献标识码:  A

文章编号:  1000-324X(2016)11-1157-09

通讯作者:  宋永才, 教授. E-mail:songyongcai_gy@163.com

收稿日期: 2016-03-3

修回日期:  2016-05-4

网络出版日期:  2016-11-10

版权声明:  2016 无机材料学报编委会 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

基金资助:  湖南省高校科技创新团队支持计划国防科技大学创新群体资助(CJ 12-01-01)

作者简介:

作者简介: 袁 钦(1983-), 男, 博士研究生. E-mail:yinzi863@163.com

展开

摘要

连续SiC纤维最主要的制备方法是先驱体转化法, 目前已发展到第三代, 它主要作为SiC基复合材料(SiCf/SiC)的增强体。SiCf/SiC具有优异的耐高温、抗氧化和高温抗蠕变性, 及其在中子辐照条件下的低放射性, 成为高温、辐射等苛刻条件下结构部件的优先候选材料。本文首先对国内外SiC纤维的发展, 尤其是对第三代SiC纤维的不同制备思路和特征进行了介绍。然后, 对SiCf/SiC制备工艺和性能的进展进行了综述, 突出了制备工艺创新与SiC纤维发展的关系。最后, 对近几年SiCf/SiC在高性能航空发动机、聚变反应堆领域的应用进展进行了总结, 并对国内连续SiC纤维和SiCf/SiC复合材料的发展进行了展望。

关键词: SiC纤维 ; SiCf/SiC ; 先驱体转化法 ; 综述

Abstract

Polymer-derived method is the main preparation method for continuous SiC fiber. So far, three generations of SiC-based fibers have been developed. SiC fiber is mainly used as reinforcement for SiC matrix to prepare SiCf/SiC composite, which exhibits excellent properties such as high-temperature resistance, oxidation resistance, high-temperature creep resistance, and neutron radiation stability. Therefore, it is considered as a promising preferred alternative material for structural components which works under harsh environments. In this review, the domestic and oversea development of the polymer-derived SiC fibers are introduced, in particular the different approaches for preparation and the characteristics of the 3rd generation fibers. Then, the development of SiCf/SiC preparation technology and properties are reviewed and the relationship between the innovation in fabrication of SiCf/SiC composite and the development of SiC fiber is hightlighted. Finally, the application progress of SiCf/SiC composite in high performance aero-engines and fusion power cores is summerized. Meanwhile, some perspectives on the development of domestic SiC fibers and SiCf/SiC are also discussed.

Keywords: SiC fibers ; SiCf/SiC ; polymer-derived ceramics ; review

0

PDF (401KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

袁钦, 宋永才. 连续SiC纤维和SiCf/SiC复合材料的研究进展[J]. , 2016, 31(11): 1157-1165 https://doi.org/10.15541/jim20160119

YUAN Qin, SONG Yong-Cai. Research and Development of Continuous SiC Fibers and SiCf/SiC Composities[J]. 无机材料学报, 2016, 31(11): 1157-1165 https://doi.org/10.15541/jim20160119

SiC陶瓷具有优异的耐高温性、抗氧化性、低化学活性、高硬度、高模量和低密度等特点[1]。但是其韧性低, 连续纤维增强技术可以有效提高陶瓷材料的断裂韧性[2]。其中, SiC纤维比C纤维具有更优异的抗氧化能力, 所以SiCf/SiC复合材料在高温氧化性条件下的应用优势引起研究者重视[3]。上世纪, Yajima教授开创了先驱体转化法制备连续SiC纤维的方法, 纤维直径小于15 μm, 具有良好的可编织性[4-6]。这一成果极大地推动了SiCf/SiC的广泛研究和应用。几十年来, 对材料制备方法、组成结构与性能关系的基础研究, 以及工程应用的牵引共同推动了SiC纤维和SiCf/SiC的发展。

本文对SiC纤维和SiCf/SiC在制备工艺、材料性能和工程应用的进展进行了综述。通过对两种材料发展趋势的分析, 对其研究提出了建议。

1 国内外连续SiC纤维发展

连续SiC纤维作为SiCf/SiC的重要组元, 其性能直接决定了复合材料制备工艺的选择和创新, 及材料整体性能的提升。自商业级连续SiC纤维——Nicalon纤维问世以来, 随着对纤维组成结构、制备工艺和性能三者之间关系研究的不断深入, 纤维制备工艺不断改进, 性能不断提高。根据组成结构和性能的特征可将现有SiC纤维划分为三代[7]表1列出了三代典型SiC纤维的主要特性信息。

表1   三代SiC纤维的组成、结构、性能和价格[7-13]

Table 1   Details of composition, structure, properties, and cost of three generations SiC based fibers[7-13]

GenerationFirstSecondThird
Trade markNicalonTyranno LOX-MHi-NicalonUFHi-Nicalon STyranno SA3SylramicUF-HM
Cross-linking
method
OxygenOxygenElectron irradiationnonElectron irradiationOxygenOxygennon
Production
Temperature/℃
1200120013001400>1500>1700>1700>1700
Element
Compostion/wt%
56Si+
32C+
12O
54Si+
32C+
12O+2Ti
63Si+
37C+
0.5O
60Si+
39C+
1O
69Si+
31C+
0.2O
68Si+
32C+
0.6Al
67Si+29C+
0.8O+
3.2B+0.4N
+2.1Ti
67Si+
31C+
2B
Crystal stateAmorphousMicrocrystallinePolycrystalline
Crystalline size/nm2-32-35-10≤520>6040~60>50
Fiber diameter/μm14111210-15127.51010-15
Density/(g·cm-3)2.552.482.742.703.053.103.053.10
Tensile strength at RT/GPa3.03.32.82.8-3.52.62.93.02.1-3.5
Young’s modulus at RT/GPa200185270N/A400375400N/A
Thermal conductivity
/(W·mK)
31.58N/A186540N/A
Cost
(US$/kg)
200012508000N/A13000500010000N/A

新窗口打开

1.1 连续SiC纤维发展历程

先驱体转化法制备SiC纤维主要包括四个步骤: 先驱体合成、纺丝、不熔化处理、高温烧成及烧结[14]。先驱体PCS为热塑性的脆性材料, 经熔融纺丝得到的原丝强度极低(<5MPa), 并且在高温热解前便会熔融而丧失纤维形状, 所以原丝需进行不熔化处理。以Nicalon纤维为例, 它在制备过程中采用空气不熔化处理, PCS分子与O2反应, 通过形成Si-O-Si而彼此连接, 最终形成具有热固性的交联结构。因此纤维在热解过程中可以保持完好形态, 提高陶瓷收率, 从而得到具有良好力学性能的SiC纤维。Nicalon的微观结构为微小β-SiC微晶, 被自由碳和SiCxOy相所包围, 整体体现出无定型态特点[15-16]。其密度和模量都远远低于纯SiC材料(E≈ 400 GPa, ρ=3.2 g/cm3), 并且SiCxOy相在1200℃以上即发生分解反应, 放出SiO和CO气体, 同时β-SiC结晶急剧长大, 导致纤维丧失完整性[17-18]。由于纤维耐高温性能的限制, SiCf/SiC的制备温度和使用温度也较低(1000~1200℃), 这极大地限制了复合材料的应用。

第一代SiC纤维耐温性差主要是由于氧引入后在纤维中形成了不稳定的SiCxOy相, 而氧来源于空气不熔化过程。因此, 研究者通过采用电子束辐照交联(EB)[19-20]、非氧活性气氛交联(CVC)[21-22]和干法纺丝[23-24]等方法避免引入氧。其中, Nippon Carbon公司通过EB不熔化方法成功制备了第二代商业化SiC纤维——Hi-Nicalon(HNL), 消除SiCxOy相后, 制备温度得以提高, 促使纤维结晶尺寸增长, 密度、模量、耐温性和抗蠕变性等均有提高[25]。CVC和干法纺丝路线由于先驱体合成、纺丝等工艺复杂等原因, 难以批量生产, 尚未形成商业化产品。但是第二代SiC纤维中β-SiC结晶尺寸仍较小, 在1400℃以上, 纤维强度由于β-SiC结晶长大而急剧下降[26]; 并且纤维组成中存在大量自由碳, 导致其抗氧化性、高温抗蠕变性提高有限, 仍达不到高性能航空发动机等领域对材料的要求[27-28]

为了满足应用需求, 必须得到近化学计量比、高结晶型SiC纤维, 即第三代SiC纤维。目前, 第三代SiC纤维的制备主要采用两种路线: (1)以Hi- Nicalon S (HNLS)为代表, 在PCS纤维EB不熔化法基础上, 将不熔化纤维在含H2的气氛中进行烧成, 脱除多余C元素, 得到C/Si≈1的元素组成[29-30]。(2)以Tyranno SA3 (TySA)[10,13]、Sylramic[31]、UF-HM[11]为代表, 通过引入致密化元素(B或Al), 在1700℃以上进行烧结致密化, 得到高性能第三代SiC纤维。该路线在空气不熔化阶段控制氧引入量, 利用SiCxOy相在烧结过程中分解放出CO, 脱除富余C。

虽然三代SiC纤维都具有近化学计量比、高结晶的特征, 但由于制备路线和工艺不同, 其成本和性能存在差异。成本方面, HNLS采用了高成本的EB不熔化方法; Sylramic则通过气-固扩散引入B元素, 所需设备复杂、生产效率较低。以上两种纤维的设备和时间成本较高, 所以售价昂贵。UF-HM纤维则由于苛刻的干法纺丝过程, 难以稳定地批量制备, 而仍未商业化。TySA只是通过在合成过程中将Al引入先驱体, 后续过程不需特殊工艺及复杂设备, 所以其售价较低。性能方面, HNLS的制备温度较低(≈1600℃), β-SiC结晶尺寸最小(20 nm), 当温度高于制备温度时, HNLS的结构仍会由于晶粒生长而变疏松, 导致强度迅速下降[32], 如图1所示。从图中看出, 三种纤维强度开始下降的温度, 与其结晶尺寸开始明显增长的温度相对应。由于三种纤维的制备温度: TySA>HNLS>HNL, 所以纤维初始结晶尺寸大小也存在相应关系。纤维在高温处理过程中, TySA纤维即使在1800℃也不存在由于结晶生长导致的强度下降; 而HNLS在1600℃以上处理时, 就会由于结晶尺寸生长而强度开始降低。

Sylramic纤维则由于含有B、N元素不利于纤维的抗氧化性和辐照条件下的稳定性[34], 并且其SiC晶粒间存在TiB2晶间相, 导致其抗蠕变性较低, 如图2所示。图2为采用Dicarlo的弯曲应力松弛(BSR)法表征的纤维抗蠕变性能, m介于0~1之间, 越大表明纤维的高温抗蠕变性能越好[35]。从图2看出, 虽然Sylramic纤维的高温抗蠕变优于第一、二代SiC纤维, 但它的高温抗蠕变为第三代中最低的。TySA纤维具有大尺寸的SiC晶粒, 使其具有较好的高温抗蠕变性能。

图1   热处理后纤维拉伸强度与结晶尺寸的关系(Ar, 1 h)[33]

Fig. 1   Relationship between tensile strength and the crystallite size for fibers annealed at elevated temperatures in Ar for 1 h[33]

图2   SiC纤维的高温抗蠕变性[9,13]

Fig. 2   High-temperature creep resisitance of the three generation SiC fibers[9,13]

综上所述, TySA纤维是目前报道中性价比最高的SiC纤维, 更能满足SiCf/SiC工业化应用的需求。目前, SiCf/SiC新工艺的研究多选用该型纤维作为增强体。

1.2 国内连续SiC纤维发展现状

西方对SiC纤维产品和技术实施严密封锁, 我国必须依靠自主研发来实现高性能连续SiC纤维的国产化。上世纪, 国防科学技术大学率先开展连续SiC纤维的研制, 经过近30年的艰难攻关, 不断解决了先驱体PCS的合成、多孔熔融纺丝、原丝不熔化及连续纤维高温烧成等关键技术, 所制备的KD-I型纤维与日本Nicalon纤维性能相当。宋永才等[36-37]积极开展低成本制备低氧含量连续SiC纤维的研究, 通过改进先驱体合成方法, 得到适于直接进行CVC不熔化的高软化点PCS纤维, 所得SiC纤维中氧含量降低到1wt%~3wt%。该方法制备的KD-II型SiC纤维性能接近Hi-Nicalon水平, 且大大降低了生产成本, 已建立了中试生产线。近年来, 该课题组积极开展Tyranno SA型纤维的研究, 目前已突破纺丝级PACS的合成, 经熔融纺丝制备原纤维束达3000 m。通过预氧化+热交联、预氧化+CVC等不同的不熔化方法, 可调节氧的引入[38-39], 并对影响纤维高温致密化的因素进行了研究[40], 但仍未完全实现连续纤维的稳定批量制备。厦门大学于2000年后也开展了SiC纤维的相关研究, 其研发思路主要与Hi-Nicalon、Hi-Nicalon S相似, 并在PCS纤维的电子束辐照交联、还原气氛下的纤维烧成等方面取得了较多的研究成果[41-42]

2 SiCf/SiC制备工艺的进展

连续SiC纤维最重要的应用是作为SiC陶瓷的增强体, 制备SiCf/SiC复合材料。除受连续SiC纤维性能影响外, SiCf/SiC的性能与其制备工艺密切相关, 目前, 传统制备工艺包括: 先驱体浸渍裂解(Polymer Infiltration and Pyrolysis, PIP)、化学气相渗透(Chemical Vapor Infiltration, CVI)和反应熔渗(Reaction Melt Infiltration, RMI)等。近年来还出现了一些新的方法, 如纳米浸渍与瞬态共晶法(Nano Infiltration and Transient Eutectic, NITE), 电泳渗透与瞬态共晶法SITE(Slip Infiltration and Transient Eutectoid), 以及多种方法联合使用的新工艺。

2.1 SiCf/SiC的传统制备工艺

PIP工艺过程是: 真空排除纤维预制件中空气, 将先驱体熔融或配成溶液后进行浸渍, 然后在惰性气氛保护下, 进行交联固化和高温裂解[43-45]。传统PIP一般采用聚碳硅烷(Polycarbosilane, PCS)作为先驱体, 其不足有: (1) PCS本身为固体, 需要配置成为溶液进行浸渍, 降低了生产效率; (2)PCS在500℃以下无交联固化活性, 在升温热解过程中大量低分子量先驱体逸出, 陶瓷产率较低(≤60%); (3)先驱体裂解过程中, 产生大量气态小分子, 在复合材料中形成孔隙和缺陷, 需要多次重复浸渍-热解过程才能使材料致密化; (4) 所得SiC基体为非化学计量比(富碳), 无定型态。以上不足限制了SiCf/SiC性能的提高。为了提高浸渍效率, 研发和应用具有低粘度液态、低温固化特性的新型先驱体, 例如聚乙烯基硅烷(Polyvinylsiane, PVS)[46-47], 含乙烯基全氢聚碳硅烷(Allyhydridopolycarbosilane, AHPCS)[48-49], 液态含乙烯基聚碳硅烷(LPVCS)[50-51]。尤其是AHPCS, 其热解陶瓷产物中C/Si接近1, 极具应用前景[52-53]。Nanetti等[54]以AHPCS为先驱体, Tyranno SA纤维为增强体, 通过PIP工艺制备了SiCf/SiC。它经1700℃热处理后, 结晶性提高, 同时热导率升高到30 W/(m·K)。

CVI法工艺过程: 气态先驱体通过扩散或在压力差的作用下定向输送至纤维编织件, 并向其内部扩散, 在900~1100℃下, 气态先驱体在编织件孔隙发生反应, 生成固态产物沉积在孔隙壁上, 孔隙壁随反应进行逐渐增厚[55]。该方法优点是能够得到高纯度、高结晶度的SiC基体; 适于制备大尺寸、复杂形状的部件。在CVI工艺过程中, 需要保持预制件表面气孔为开口, 以保证先驱体扩散的进行。但这一固有特性导致其主要缺点在于所得复合材料孔隙率较高(10%~15%)[56], 并且制备周期长, 设备复杂、成本高。目前对CVI的改进包括: 强制流动/热梯度CVI(F-CVI)和脉冲CVI(P-CVI)等, 主要目的均是促进先驱体渗透, 降低孔隙率, 缩短制备周期[57-60]

RMI法工艺过程: 将SiC和C的混合微粉压入编织件中, 干燥后将硅/硅合金熔融渗透至基体, 并与接触的C反应, 生成SiC, 制得致密的复合材料。该方法的优点在于所得材料孔隙率降低至2%~5%, 制备周期短, 成本低[61-62], 但是材料中不可避免地存在游离硅, 限制了其耐高温性和抗辐射性[63-64]

2.2 SiCf/SiC制备工艺的新进展

SiCf/SiC作为结构材料, 为了获得更高的耐温性、抗氧化性, 热导率和力学性能, 需要进一步提高复合材料基体的致密性、结晶度。21世纪初, 日本的Koyama开发了NITE工艺, 其工艺路线如图3所示。如图3所示, 首先配制含有β-SiC纳米颗粒、烧结助剂(Al2O3-Y2O3)和临时粘结剂的稳定混合悬浊液作为浆料。将Tyranno SA纤维浸入浆料, 然后重新缠绕在辊上; 当浆料干后, 得到1D的预浸片; 再将预浸片根据需要裁剪、堆叠, 放入热压模具中。在1800℃以上, 15~20 MPa条件下热压烧结成型。所得SiCf/SiC复合材料的孔隙率低(3%~9%), 相对密度达到95%以上, 及结晶度高, 呈现出优异的耐辐照性、气密性和较高的热导率[66-68]。该方法已实现工业化, 产品为Cef-NITE SiCf/SiC, 并成功制备了高温交换器、加热器件和隔热面板等器件[69]; 但其缺点是不可避免地引入残余氧化物烧结助剂。

图3   NITE方法的工艺路线图[65]

Fig. 3   Process flow diagram of NITE technique[65]

电泳渗透是一种制备复合材料基体的方法, 将亚微米陶瓷颗粒配制成悬浊液, 在电泳作用下, 颗粒向纤维编织件内渗透并沉积。电泳渗透效果优于压力渗透, 但单纯通过SiC颗粒的电泳沉积所制得的复合材料孔隙率较高(35%)。Ivekovic等[70-71]将电泳渗透和瞬态共晶相结合开发出新方法SITE, 即将SiC和烧结助剂颗粒混合配成悬浊液, 通过电泳渗透到编织件, 最后在1400℃以上进行烧结。为了避免引入含氧第二相, Novak等[72]在SiC微粉通过电泳沉积渗透到纤维编织件后, 以AHPCS为先驱体, 通过PIP进行致密化, SiCf/SiC经最终1600℃的热处理后, 孔隙率降低到14%, 具有高结晶和高热导率(室温为65 W/(m·K)), 称为SITE-P方法。以上两种方法仍处于实验室研究阶段。

各种制备工艺各有优缺点, 为了满足工程应用对材料致密性、结晶度、力学性能及热导率等要求, 多种工艺相结合也是主要研究趋势之一[73-75]

从上述对各工艺过程的介绍不难看出, PIP和CVI方法在较为温和的温度下即可完成, 选用耐温性较低的SiC纤维即可。采用RMI、NITE和SITE等方法, 并提高复合材料基体结晶度时, 则需要选用耐温性在1400℃以上的SiC纤维, 尤其是TySA纤维。可见SiCf/SiC制备工艺的选择和创新, 及材料整体性能提升依赖于SiC纤维的发展。

3 SiCf/SiC复合材料应用的进展

SiCf/SiC具备耐高温、抗氧化、高比强度/模量和耐中子辐射等性能, 使其成为高温和辐射条件下结构部件的备选材料。近年来, SiCf/SiC在制备高性能航空发动机和核聚变反应堆结构部件的研究和应用方面发展迅速。

3.1 SiCf/SiC在航空发动机领域应用进展

航空发动机的发展趋势是不断提高推重比, 而发动机热端部件的温度将随之升高, 当推重比大于10时, 热端部件的工作温度将远远超过传统高温镍基合金的承受温度(1150℃)。传统高温合金材料结合冷却气流结构设计已无法解决耐温性和燃烧效率的矛盾, 采用新材料体系才是根本解决途径, SiCf/SiC以其优异的性能成为优先候选材料[7,76]

西方发达国家在SiCf/SiC发动机高温结构件的研究起步较早, 积累了大量的研究成果, 部分已达到实用水平。上世纪90年代, 美国NASA通过EPM项目的研究成果确定SiCf/SiC为HSCT(High Speed Civil Transport)发展的最佳材料体系[77]。随后, 各航空发动机制造商积极参与NASA主导的一系列相关项目, 如IHPTET、UEET和VAATE等。在这些研究计划中, SiCf/SiC被用于设计和制备燃烧室火焰筒、推力室、涡轮静子叶片、机翼前缘等高温部件, 在与高温合金的高温对比考核中表现出明显优势, 有效减少冷却系统设计, 减轻构件重量, 提高了发动机效率[8, 56, 78-81]

经过20多年的积累, 近几年SiCf/SiC在航空发动机上的工程化应用取得实质进展。GE与CFM公司合作推出了世界首台热端部件采用SiCf/SiC的商用发动机LEAP, 并用于空客A320neo、波音737MAX和中国C919等机型[82]。GE公司还在GE9X发动机的内外燃烧室衬套、涡轮和喷嘴等部件采用SiCf/SiC设计, 该发动机将用于波音777X等宽体客机[56]。2015年2月, GE公司在F414涡扇发动机验证机上成功试验了SiCf/SiC制备的旋转低压涡轮叶片, 表明SiCf/SiC突破了之前仅应用于发动机静子部件的局限, 可以满足发动机工作温度最高区域的要求[83]

3.2 SiCf/SiC在核聚变领域应用进展

随着社会的发展, 人类对能源的需求与日俱增, 核聚变能是解决人类能源问题的重要途径之一[84]。核聚变反应堆的结构材料长期处于高温、高辐照和高应力的严酷条件下, SiCf/SiC具有伪塑性断裂行为、中子辐射下非常低的放射性、低氚渗透率, 是合适的候选结构材料, 主要应用在反应堆包层、流道插件以及偏滤器等部件上[64,85-87]

西方发达国家对SiCf/SiC在核聚变领域的研究十分活跃, 尤其是日本凭借SiC纤维研制方面的优势, 积极参与到与欧美的合作中。橡树岭国家实验室(ORNL)与日本合作开展材料的辐照测试等基础研究, 核级SiCf/SiC在中子辐照前后的力学和热物理性能测试已全面完成[88]。西北太平洋国家实验室(PNNL)对SiCf/SiC在聚变工作条件下的化学相容性进行了研究[89]

通过基础研究的积累, 美国等已对SiCf/SiC材料工程化应用进行考察, 如美国ARIES-I和ARIES- AT, 日本DREAM, 欧盟PPCS-D、TAURO等项目[90-94]。我国由于缺乏第三代连续SiC纤维, 无法制备核级SiCf/SiC, 所以难以开展相关研究。

4 结论与展望

美、日依靠在连续SiC纤维方面的技术优势, 率先开展了SiCf/SiC在航空航天、核工业及军事方面的应用研究, 并不断创新和改进复合材料的制备工艺, 提高其性能以适应苛刻的应用环境。面对连续SiC纤维和SiCf/SiC两种材料的广阔应用前景和西方的技术封锁, 我国自主研发的需求显得迫在眉睫。

(1) 虽然我国连续SiC纤维的研究起步较晚, 但国内可以力争高起点、前瞻性地进行跨越式发展。根据已有SiC纤维特点、性能和成本的综合比较, 优先发展Tyranno SA型纤维, 不仅可以为制备SiCf/SiC新工艺的研究提供关键原料, 更有利于SiCf/SiC工业化应用的扩展。在纤维制备的基础研究中, 必须充分考虑生产实际, 使研究成果能够更直接地指导纤维的稳定批量生产。

(2) 国内SiCf/SiC制备工艺主要为PIP、CVI等传统方法, 并且制备温度一般在1300℃以下, 难以制备出具有高结晶、近化学计量比和高致密性为特征的复合材料, 无法满足苛刻应用环境对材料的要求。这主要是受国内现有连续SiC纤维耐温性等性能的限制。

(3) 当连续SiC纤维制备取得进展时, 应及时开展提高SiCf/SiC性能的新工艺研究, 并对所得SiCf/SiC部件在应用试验中的数据进行积累和共享。

The authors have declared that no competing interests exist.


参考文献

[1] MADAR R.

Silicon carbide in contention.

Nature, 2004, 430(7003): 974-975.

[本文引用: 1]     

[2] EVANS A G.

Prospective on the development of high toughness ceramics.

J. Am. Ceram. Soc., 1990, 73(2): 187-206.

[本文引用: 1]     

[3] MA QING-SONG, LIU HAI-TAO, PAN YU, et al.

Research progress on the application of C/SiC composites in scramjet.

Journal of Inorganic Materials, 2013, 28(3): 247-255.

[本文引用: 1]     

[4] YAJIMA S, HAYASHI J, OMORI M, et al.

Development of a SiC fiber with high tensile strength.

Nature, 1976, 261(5562): 683-685.

[本文引用: 1]     

[5] YAJIMA S, HASEGAWA Y, HAYASHI J, et al.

Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus. I. Synthesis of polycarbosilane as precursor.

J. Mater. Sci., 1978, 13(12): 2569-2576.

[6] HASEGAWA Y, IIMURA M, YAJIMA S.

Synthesis of continuous silicon carbide fibre. II Conversion of polycarbosilane fibre into silicon carbide fibres.

J. Mater. Sci., 1980, 15(3): 720-728.

[本文引用: 1]     

[7] BUNSELL A R, PIANT A.

A review of the development of three generations of small diameter silicon carbide fibres.

J. Mater. Sci., 2006, 41(3): 823-839.

[本文引用: 4]     

[8] NASLAIN R.

Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview.

Compos. Sci. Technol., 2004, 64(2): 155-170.

[本文引用: 1]     

[9] ZHAO DA-FANG, WANG HAI-ZHE, LI XIAO-DONG.

Development of polymer-derived SiC fiber.

Journal of Inorganic Materials, 2009, 24(6): 1097-1104.

[本文引用: 2]     

[10] ISHIKAWA T.

Advances in inorganic fibers.

Adv. Polym. Sci., 2005, 178: 109-144.

[本文引用: 1]     

[11] SACKS M D.

Effect of composition and heat treatment conditions on the tensile strength and creep resistance of SiC-based fibers.

J. Eur. Ceram. Soc., 1999, 19(13/14): 2305-2315.

[本文引用: 1]     

[12] SACKS M, SCHEIFFELE G, ZHANG L, et al.

Polymer-derived SiC-based fibers with high tensile strength and improved creep resistance.

Ceram. Eng. Sci. Proc., 1988, 19(3): 73-86.

[13] ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al.

High-strength alkali-resistant sintered SiC fiber stable to 2200℃.

Nature, 1998, 391(6669): 773-775.

[本文引用: 5]     

[14] WANG DE-YIN, MAO XIAN-HE, SONG YONG-CAI, et al.

Preparation and properties of SiC fiber with a stable excess carbon layer on the surface.

Journal of Inorganic Materials, 2009, 24(6): 1209-1213.

[本文引用: 1]     

[15] COUSTUMER P L, MONTHIOUX M, OBERLIN A.

Understanding Nicalon fibre.

J. Eur. Ceram. Soc., 1993, 11(2): 95-103.

[本文引用: 1]     

[16] WANG DE-YIN, SONG YONG-CAI, JIAN KE.

Effect of composition and structure on the specific resistivity of continuous silicon carbide fibers.

Journal of Inorganic Materials, 2012, 27(2): 162-168.

[本文引用: 1]     

[17] SHIMOO T, CHEN H, OKAMURA K.

High-temperature stability of Nicalon under Ar or O2 atmosphere.

J. Mater. Sci., 1994, 29(2): 456-463.

[本文引用: 1]     

[18] JOHNSON S M, BRITTAIN R D, LAMOREAUX R H, et al.

Degradation mechanisms of silicon carbide fibers.

J. Am. Ceram. Soc., 1988, 71(3): 132-135.

[本文引用: 1]     

[19] SUGIMOTO M, SHIMOO T, OKAMURA K, et al.

Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: I, Evolved gas analysis.

J. Am. Ceram. Soc., 1995, 78(8): 1013-1017.

[本文引用: 1]     

[20] TAKI T, OKAMURA K, SATO M, et al.

A study on the electron irradiation curing mechanism of polycarbosilane fibers by solid-state 29Si high-resolution nuclear magnetic resonance spectroscopy.

J. Mater. Sci. Lett., 1988, 7(3): 209-211.

[本文引用: 1]     

[21] HASEGAWA Y.

Si-C fiber prepared from polycarbosilane cured without oxygen.

J. Inorg. Organomet. P., 1992, 2(1): 161-169.

[本文引用: 1]     

[22] MAO X H, SONG Y C, LI W, et al.

Mechanism of curing process for polycarbosilane fiber with cyclohexene vapor.

J. Appl. Polym. Sci., 2007, 105(3): 1651-1657.

[本文引用: 1]     

[23] TOREKI W, BATICH C D, SACKS M D, et al.

Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability.

Compos. Sci. Technol., 1994, 51(2): 145-159.

[本文引用: 1]     

[24] XUE JIN-GEN, WANG YING-DE, SONG YONG-CAI.

Preparation of low oxygen SiC fiber by dry spinning.

Journal of Inorganic Materials, 2007, 22(4): 681-684.

[本文引用: 1]     

[25] TAKEDA M, IMAI YOSHIKAZU, ICHIKAWA HIROSHI, et al.

Thermal stability of SiC fiber prepared by an irradiation-curing process.

Compos. Sci. Technol., 1999, 59(6): 793-799.

[本文引用: 1]     

[26] CHOLLON G, PAILLER R, NASLAIN R, et al.

Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi- Nicalon).

J. Mater. Sci., 1997, 32(2): 327-347.

[本文引用: 1]     

[27] SHIMOO T, OKAMURA K, MUTOH W.

Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly(carbosilane) precursor.

J. Mater. Sci., 2003, 38(8): 1653-1660.

[本文引用: 1]     

[28] BODET R, BOURRAT X, LAMON J, et al.

Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content.

J. Mater. Sci., 1995, 30(3): 661-677.

[本文引用: 1]     

[29] TAKEDA M, SAKAMOTO J, IMAI Y, et al.

Properties of stoichiometric silicon carbide fiber derived from polycarbosilane.

Ceram. Eng. Sci. Proc., 1994, 15(4): 133-141.

[本文引用: 1]     

[30] TAKEDA M, SAEKI A, SAKAMOTO J, et al.

Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers.

J. Am. Ceram. Soc., 2000, 83(5): 1063-1069.

[本文引用: 1]     

[31] LIPOWITZ J, RABE J A, ZANGVIL A, et al.

Structure and properties of Sylramic silicon carbide fiber-a polycrystalline, stoichiometric β-SiC composition.

Ceram. Eng. Sci. Proc., 1997, 18(3): 147-157.

[本文引用: 1]     

[32] TAKEDA M, SAEKI A, SAKAMOTO J, et al.

Properties of polycarbosilane-derived silicon carbide fibers with various C/Si compositions.

Compos. Sci. Technol., 1999, 59(6): 787-792.

[本文引用: 1]     

[33] SHA J J, HINOKI T, KOHYAMA A.

Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures.

J. Mater. Sci., 2007, 42(13): 5046-5056.

[本文引用: 2]     

[34] IVEKOVIC A, NOVAK S, DRAZIC G, et al.

Current status and prospects of SiCf/SiC for fusion structural applications.

J. Eur. Ceram. Soc., 2013, 33(10): 1577-1589.

[本文引用: 1]     

[35] DICARLO J A.

Creep limitations of current polycrystalline ceramic fibers.

Compos. Sci. Technol., 1994, 51(2): 213-217.

[本文引用: 1]     

[36] LI YONG-QIANG, SONG YONG-CAI.

Synthesis and spinnability of the high softening-point polycarbosilane.

Chem. J. Chinese Universities, 2014, 35(10): 2272-2280.

[本文引用: 1]     

[37] LI YONG-QIANG, SONG YONG-CAI, YUAN QIN.

Synthesis and spinnability of the high softening-point polycarbosilane via bridge method

.Acta Polymerica Sinica, 2015(2): 186-196.

[本文引用: 1]     

[38] YUAN QIN, SONG YONG-CAI, WANG GUO-DONG.

Adjusting the oxygen content of the cured polyaluminocarbosilane fibers.

Chem. J. Chinese Universities, 2015, 36(6): 1213-1220.

[本文引用: 1]     

[39] YUAN QIN, SONG YONG-CAI, WANG GUO-DONG.

Studies on the air curing and oxygen control of polyaluminocarbosilane fibers with different Al contents

.Acta Polymerica Sinica, 2016(2): 155-163.

[本文引用: 1]     

[40] YUAN QIN, SONG YONG-CAI.

Effects of Al and O content on the transformation from SiAlCO to Si(Al)C fibers after high temperature treatment.

Journal of Inorganic Materials, 2016, 31(4): 393-400.

[本文引用: 1]     

[41] SU Z, ZHANG L, LI Y, et al.

Rapid preparation of SiC fibers using a curing route of electron irradiation in a low oxygen concentration atmosphere.

J. Am. Ceram. Soc., 2015, 98(7): 2014-2017.

[本文引用: 1]     

[42] TANG X, ZHANG L, TU H, et al.

Decarbonization mechanisms of polycarbosilane during pyrolysis in hydrogen for preparation of silicon carbide fibers.

J. Mater. Sci., 2010, 45(21): 5749-5755.

[本文引用: 1]     

[43] ZHAO S, ZHOU X, YU J.

Effect of heat treatment on the mechanical properties of PIP-SiC/SiC composites fabricated with a consolidation process.

Ceram. Int., 2014, 40(3): 3879-3885.

[本文引用: 1]     

[44] HE XIN-BO, QU XUAN-HUI, YE BIN.

Preparation and mechanical properties of SiCf/SiC composites.

Journal of Inorganic Materials, 2005, 20(3): 677-684.

[45] ZHAO SHUANG, YANG ZI-CHUN, ZHOU XIN-GUI.

Fracture behavior of SiC/SiC composites with different interfaces.

Journal of Inorganic Materials, 2016, 31(1): 58-62.

[本文引用: 1]     

[46] KOTANI M, INOUE T, KOHYAMA A, et al.

Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite.

Mater. Sci. Eng. A, 2003, 357(1/2): 376-385.

[本文引用: 1]     

[47] KOTANI M, INOUE T, KOHYAMA A, et al.

Consolidation of polymer-derived SiC matrix composites: processing and microstructure.

Compos. Sci. Technol., 2002, 62(16): 2179-2188.

[本文引用: 1]     

[48] INTERRANTE L V, WHITMARSH C W, SHERWOOD W, et al.

High yield polycarbosilane precursors to stoichiometric SiC synthesis, pyrolysis and application.

Pro. Mater. Res. Soc., 1994, 346: 593-603.

[本文引用: 1]     

[49] RUSHKIN I L, SHEN Q, LEHMAN S E, et al.

Modification of a hyperbranched hydridopolycarbosilane as a route to new polycarbosilanes.

Macromolecules, 1997, 30(11): 3141-3146.

[本文引用: 1]     

[50] ZHAO S, YANG Z, ZHOU X.

Microstructure and mechanical properties of compact SiC/SiC composite fabricated with an infiltrative liquid precursor.

J. Am. Ceram. Soc., 2015, 98(4): 1332-1337.

[本文引用: 1]     

[51] ZHAO S, ZHOU X, YU J, et al.

SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS.

Fusion Eng. Des., 2014, 89(2): 131-136.

[本文引用: 1]     

[52] KOTANI M, KATOH Y, KOHYAMA A, et al.

Fabrication and oxidation resistance property of allylhydridopolycarbosilane derived SiC/SiC composites.

J. Ceram. Soc. Jpn., 2003, 111: 300-307.

[本文引用: 1]     

[53] INTERRANTE L V, JACOBS J M, SHERWOOD W, et al.

Fabrication and properties of fiber- and particulate-reinforced SiC matrix composites obtained with (A)HPCS as the matrix source

. Key Eng Mater, 1996, 127-131: 271-278.

[本文引用: 1]     

[54] NANNETTI C A, ORTONA A, PINTO D A, et al.

Manufacturing SiC-fiber-reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis.

J. Am. Ceram. Soc., 2004, 87(7): 1205-1209.

[本文引用: 1]     

[55] XU YONG-DONG, CHENG LAI-FEI, ZHANG LI-TONG.

Three dimensional textile SiC/SiC composites by chemical vapor infiltration.

Journal of Inorganic Materials, 2001, 12(2): 344-348.

[本文引用: 1]     

[56] KATOH Y, SNEAD L L, HENAGER C H, et al.

Current status and recent research achievements in SiC/SiC composites.

J. Nucl. Mater., 2014, 455(1/2/3): 387-397.

[本文引用: 3]     

[57] BERTRAND S, LAVAUD J F, HADI R E, et al.

The thermal gradient-pulse flow CVI process: a new chemical vapor infiltration technique for the densification of fibre preforms.

J. Eur. Ceram. Soc., 1998, 18(7): 857-870.

[本文引用: 1]     

[58] IGAWA N, TAGUCHI T, SNEAD L L, et al.

Optimizing the fabrication process for superior mechanical properties in the FCVI SiC matrix/stoichiometric SiC fiber composite system

. J Nucl. Mater., 2002, 307-311(Part 2): 1205-1209.

[59] NASLAIN R R, PAILLER R, BOURRAT X, et al.

Processing of Ceramic Matrix Composites by Pulsed-CVI and Related Techniques

. Key Eng. Mater., 1999, 159-160: 359-366.

[60] ZHOU QING, DONG SHAO-MING, ZHANG XIANG-YU, et al.

Carbon fiber surfae coating by forced pressure-pulsed CVI.

Journal of Inorganic Materials, 2006, 21(6): 58-62.

[本文引用: 1]     

[61] SAYANO A, SUTOH C, SUYAMA S, et al.

Development of a reaction-sintered silicon carbide matrix composite

. J. Nucl. Mater., 1999, 271-272: 467-471.

[本文引用: 1]     

[62] WANG H, ZHOU X, YU J, et al.

Fabrication of SiCf/SiC composites by chemical vapor infiltration and vapor silicon infiltration.

Mater. Lett., 2010, 64(15): 1691-1693.

[本文引用: 1]     

[63] EINSET E O.

Analysis of reactive melt infiltration in the processing of ceramics and ceramic composites.

Chem. Eng. Sci., 1998, 53(5): 1027-1039.

[本文引用: 1]     

[64] KATOH Y, SNEAD L L, HENAGER C H, et al.

Current status and critical issues for development of SiC composites for fusion applications.

J. Nucl. Mater., 2007, 367-370(Part A): 659-671.

[本文引用: 2]     

[65] KOHYAMA A, PARK J S, JUNG H C.

Advanced SiC fibers and SiC/SiC composites toward industrialization.

J. Nucl. Mater., 2011, 417(1/2/3): 340-343.

[本文引用: 2]     

[66] SHIMODA K, PARK J S, HINOKI T, et al.

Microstructural optimization of high-temperature SiC/SiC composites by NITE process

. J. Nucl. Mater., 2009, 386-388: 634-638.

[本文引用: 1]     

[67] KOYANAGI T, KONDO S, HINOKI T.

The influence of sintering additives on the irradiation resistance of NITE SiC.

J. Nucl. Mater., 2011, 417(1/2/3): 435-439.

[68] KOHYAMA A, KATOH Y.

Overview of CREST-ACE program for SiC/SiC ceramic composites and their energy system applications.

Ceram. Trans., 2002, 144: 3-18.

[本文引用: 1]     

[69] IEST Co Ltd.

URL      [本文引用: 1]     

[70] NOVAK S, RADE K, KONIG K, et al.

Electrophoretic deposition in the production of SiC/SiC composites for fusion reactor applications.

J. Eur. Ceram. Soc., 2008, 28(14): 2801-2807.

[本文引用: 1]     

[71] NOVAK S, DRAZIC G, KONIG K, et al.

Preparation of SiCf/SiC composites by the slip infiltration and transient eutectoid (SITE) process.

J. Nucl. Mater., 2010, 399(2/3): 167-174.

[本文引用: 1]     

[72] NOVAK S, IVEKOVIC A.

Fabrication of SiCf/SiC composites by SITE-P process.

J. Nucl. Mater., 2012, 427(1/2/3): 110-115.

[本文引用: 1]     

[73] NASLAIN R.

DESIGN. Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview.

Compos. Sci. Technol., 2004, 64(2): 155-170.

[本文引用: 1]     

[74] CHEN S, HU H, ZHANG Y, et al.

Rapid densification of C/SiC composites by joint processes of CLVD and PIP.

Mater. Lett., 2011, 65(19/20): 3137-3139.

[75] YAN LIAN-SHENG, LI HE-JUN, CUI HONG, et al.

Low-cost C/SiC composites prepared by CVI+pressure-PIP hybrid process.

Journal of Inorganic Materials, 2006, 21(3): 664-670.

[本文引用: 1]     

[76] WEN SHENG-QIONG, HE AI-JIE.Application of CMC on thermal parts of aeroengine.Aeronautical Manufacturing Technology, 2009(S1): 4-7.

[本文引用: 1]     

[77] GAO TIE, HONG ZHI-LIANG, YANG JUAN.Application and prospect of ceramic matrix composite components for commercial aircraft engine.Aeronautical Manufacturing Technology, 2014(6): 14-21.

[本文引用: 1]     

[78] MURTHY P, NEMETH N, BREWER D S, et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane.Compos. Part B-Eng., 2008(39): 694-703.

[本文引用: 1]     

[79] VERRILLI M J, MARTIN L C, BREWER D N.RQL Sector Rig Testing of SiC/SiC Combustor Liners. NASA/TM-2002-211509, 2002.

[80] ELAM S, EFFMGER M, HOLMES R, et al.

Lightweight Chambers for Thrust Cell Applications. 36th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit,

Alabama, 2000: 1-10.

[81] OGASAWARA T.

Recent research activities regarding SiC-based ceramic composites for aerospace applications.

J. Plasma Fusion Res., 2004, 80(1): 36-41.

[本文引用: 1]     

[82]

URL      [本文引用: 1]     

[83] GE

URL      [本文引用: 1]     

[84] SMITH C L.

The need for fusion.

Fusion Eng. Des., 2005, 74(1-4): 3-8.

[本文引用: 1]     

[85] ZHAO S, ZHOU X, YU J, et al.

Compatibility of PIP SiCf/SiC with LiPb at 700℃.

Fusion Eng. Des., 2010, 85(7/8/9): 1624-1626.

[本文引用: 1]     

[86] SNEAD L L, JONES R H, KOHYAMA A, et al.

Status of silicon carbide for fusion

. J. Nucl. Mater., 1996, 233-237(Part 1): 26-36.

[87] NOZAWA T, HINOKI T, HASEGAWA A, et al.

Recent advances and issues in development of silicon carbide composites for fusion applications

. J. Nucl. Mater., 2009, 386-388: 622-627.

[本文引用: 1]     

[88] SNEAD L L, NOZAWA T, FERRARIS M, et al.

Silicon carbide composites as fusion power reactor structural materials.

J. Nucl. Mater., 2011, 417(1/2/3): 330-339.

[本文引用: 1]     

[89] HENAGER C H, KURTZ R J.

Compatibility of interfaces and fibers for SiC-composites in fusion environments

. J. Nucl. Mater., 2009, 386-388: 670-674.

[本文引用: 1]     

[90] IHLI T, BASU T K, GIANCARLI L M, et al.

Review of blanket designs for advanced fusion reactors.

Fusion Eng. Des., 2008, 83(7/8/9): 912-919.

[本文引用: 1]     

[91] NORAJITRA P, BUHLER L, FISCHER U, et al.

The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators

. Fusion Eng. Des., 2001, 58-59: 629-634.

[92] RAFFRAY A R, EL-GUEBALY L, GORDEEV S, et al.

High performance blanket for ARIES-AT power plant

. Fusion Eng. Des., 2001, 58-59: 549-553.

[93] NORAJITRAA P, ABDEL-KHALIK S I, GIANCARLI L M, et al.

Divertor conceptual designs for a fusion power plant.

Fusion Eng. Des., 2008, 83(7/8/9): 893-902.

[94] GOLFIER H, AIELLO G, FUTTERER A M, et al.

Performance of the TAURO blanket system associated with a liquid-metal cooled divertor

. Fusion Eng. Des., 2000, 49-50: 559-565.

[本文引用: 1]     

版权所有 © 2019 《无机材料学报》编辑部
通信地址:上海市嘉定区和硕路585号 邮政编码:201899 电话: 021-69906267
E-mail:jim@mail.sic.ac.cn
沪ICP备05005480号-12  沪公网安备31011402010211号
本系统由北京玛格泰克科技发展有限公司设计开发

/