Research Paper

Hydrothermal Synthesis of ZnO Nanorod Arrays and Their Morphology Control

  • LI Bi-Hui ,
  • TANG Yi-Wen ,
  • ZHANG Xin ,
  • JIANG Yun ,
  • LUO Li-Juan ,
  • JIA Zhi-Yong
Expand
  • College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China

Received date: 2006-06-28

  Revised date: 2006-09-11

  Online published: 2007-05-20

Abstract

By using the hydrothermal method, the ZnO nanorod arrays with different morphologies were synthesized on ZnO nanoparticle-coated transparent conductivity glasses (TCO) at low temperatures by controlling the pH value of precursory solutions. The ZnO nanorod arrays were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) and ultraviolet-visible spectrophotometer (UV-Vis). Furthermore, the mechanism was primary discussed. The results show that the ZnO nanorod is a single crystal and it grows along c axis. When the pH value is about 10.5, the array is well-aligned and the diameter of the nanorod is uniform. Optical characterization shows that the optical transmittance of the film is higher than 80% in the visible wavelength and its band gap is about 3.25eV.

Cite this article

LI Bi-Hui , TANG Yi-Wen , ZHANG Xin , JIANG Yun , LUO Li-Juan , JIA Zhi-Yong . Hydrothermal Synthesis of ZnO Nanorod Arrays and Their Morphology Control[J]. Journal of Inorganic Materials, 2007 , 22(3) : 403 -406 . DOI: 10.3724/SP.J.1077.2007.00403

References

[1] Mahalinggam T, John V S, Sebastian P J. Mater. Res. Bull., 2003, 38: 269--277.
[2] Ismail B, Abaab M A, Rezig B. Thin Solid Films, 2001, 383: 92--94.
[3] Huang M H, Mao S, Feick H, et al. Science, 2001, 292: 1897--1899.
[4] Chan H B, Aksyuk V A, KleimanR N, et al. Science, 2001, 291: 1941--1944.
[5] Law M, Greene L E, Johnson J C, et al. Nature Material, 2005, 4: 455--459.
[6] Baxter J B, Aydil E S. Appl. Phys. Lett., 2005, 86: 053114.
[7] Gao Y F, Nagai M. Langmuir, 2006, 22: 3936--3940.
[8] Huang M H, Wu Y, Feick H, et al. Advance Material, 2001, 13: 113--116.
[9] He J H, Hsu J H, Wang C H, et al. J. Phys. Chem. B, 2006, 110: 50--53.
[10] Kar S, Pal B N, Chaudhuri S, et al. J. Phys. Chem. B, 2006, 110: 4605--4611.
[11] Xu L, Guo Y, Liao Q, et al. J. Phys. Chem. B, 2005, 109: 13519--13522.
[12] Vayssieres L, Keis K, Lindquist S-E, et al. J. Phys. Chem. B, 2001, 105: 3350--3352.
[13] Wu X D, Zheng L J, Wu D. Langmuir, 2005, 21: 2665--2667.
[14] W.P.Hsu J, R.Tian Z, C.Simmons N. Nano Lett., 2005, 5: 83--86.
[15] Zhang H, Yang D R, Ma X Y, et al. J. Phys. Chem. B, 2005, 109: 17055--17059.
[16] Li Q C, Kumar V, Li Y, et al. Chem. Mater., 2005, 17: 1001--1006.
[17] Zhang L L, Guo C X, Chen J G, et al. Chin. Phys., 2005, 14: 586--591.
[18] 刘晓新, 靳正国, 王惠, 等(LIU Xiao-Xin, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (4): 999--1004.
[19] 刘红霞, 周圣明, 李抒智, 等. 物理学报, 2006, 55 (3): 1398--1401.
[20] Fang Y P, Pang Q, Wen X G, et al. Small, 2006, 2: 612--615.
[21] Li W J, Shi E W, Zhong W Z, et al. J. Cryst. Growth, 1999, 203: 186--196.
Outlines

/