Research Paper

TiO2 Nanotube Arrays Electrode Prepared by Anodic Oxidation and Its Photoelectrochemical Properties

  • LI He ,
  • YAO Su-Wei ,
  • ZHANG Wei-Guo ,
  • WANG Hong-Zhi ,
  • BEN Yu-Heng
Expand
  • SUGIYAMA Laboratory of Surface Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 2006-04-19

  Revised date: 2006-07-03

  Online published: 2007-03-20

Abstract

TiO2 nanotube arrays photoelectrodes were fabricated by anodic oxidation on a pure titanium sheet. The morphology and structure of the nanotube arrays were characterized by SEM and XRD. Oxidation parameters for preparation were investigated. The photoelectrochemical properties of the TiO2 nanotube arrays electrodes were evaluated by steady-state photocurrent response. The results show that the vertical oriented TiO2 nanotube arrays can be obtained at 20V for 30min in 1wt% HF solution. And the aperture size of nanotubes is about 90nm and the thickness of tube wall is about 10nm. The structure of nanotube arrays is a mixture of anatase and rutile through annealed at 600℃. The results of photoelectric testing show that photoelectrochemical properties of TiO2 nanotube arrays electrode annealed at 600℃ are optimum. Compared with TiO2 nanoporous films, the properties of the TiO2 nanotube arrays are enhanced remarkably.

Cite this article

LI He , YAO Su-Wei , ZHANG Wei-Guo , WANG Hong-Zhi , BEN Yu-Heng . TiO2 Nanotube Arrays Electrode Prepared by Anodic Oxidation and Its Photoelectrochemical Properties[J]. Journal of Inorganic Materials, 2007 , 22(2) : 349 -353 . DOI: 10.3724/SP.J.1077.2007.00349

References

[1] O’Regan B, Gratzel M. Nature, 1991, 353: 737--739.
[2] Dvoranova D, Brezova V, Mazur M, et al. Appl. Catal. B, 2002, 37 (2): 91--105.
[3] Sasaki T, Koshizaki N, Yon J W, et al. J. Photo. Photobio. A, 2001, 145 (1/2): 11--16.
[4] 何文, 张旭东, 李鹏, 等(HE Wen, et al). 无机材料学报 (Journal of Inorganic Materials), 2005, 20 (2): 508--512.
[5] Yin S, Maeda D, Ishitsuka M, et a1. Solid State Ionics, 2002, 151 (1/4): 377--383.
[6] Dhanalakshmi K B, Latha S, Anandan S, et al. Int. J. Hydrgen Energ., 2001, 26 (7): 669--674.
[7] Michailouski A, Almawlawi D, Cheng G S, et al. Chem. Phys. Lett., 2001, 349 (1/2): 1--5.
[8] 马新起, 郭新勇, 金振声, (MA Xini, et al). 无机材料学报 (Journal of Inorganic Materials), 2003, 18 (5): 1131--1134.
[9] Hoyer P. Advanced Materials, 1996, 8 (10): 857--859.
[10] Zhu Y, Li H, Koltypin Y, et al. Chem. Commun., 2001, 24: 261--267.
[11] Pu L, Bao X M, Zou J P, et al. Angew. Chem., Int. Ed. 2001, 40: 1490--1493.
[12] Gong D, Grimes C A, Varghese O K, et al. J. Mater. Res., 2001, 16: 3331--3334.
[13] Varghese O K, Gong D, Paulose M, et al. J. Mater. Res., 2003, 18: 156--165.
[14] Bickley R I, Gonzalez-Carreno T, Lees J. J. Solid State Chem., 1991, 92: 178--190.
[15] Bacsa R R, KiWi J. J. Appl. Catal. B : Environ, 1998, 16: 19--29.
[16] 赵转清, 姚素薇, 张卫国, 等. 物理化学学报, 2002, 18 (5): 473-476.
Outlines

/