Research Paper

Carbon/Silicon Carbide Composites with Interphases Processed by Temperature-pulsing Chemical Vapor Infiltration Technique

  • YUAN Ming ,
  • HUANG Zheng-Ren ,
  • DONG Shao-Ming ,
  • JIANG Dong-Liang
Expand
  • Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2006-03-29

  Revised date: 2006-06-19

  Online published: 2007-03-20

Abstract

A novel method of temperature-pulsing chemical vapor infiltration (T-pulsing CVI)was introduced. And interfacial coatings of silicon carbide (SiC) layer and pyrolytic carbon (PyC) layer were processed via the route. 3D carbon fiber preforms were densified by forced-flow thermal-gradient chemical vapor infiltration (FCVI) with the precursor of hexamethyldisilazane (HMDS). The microstructure of interphases was investigated by transmission electron microscope (TEM). The configuration of specimens' fracture surface was observed by scanning electron microscope (SEM). Results show that the density of the composites is 1.98g·cm-3. The thickness of the SiC layer estimated is 20nm, and 50nm for the PyC layer. The average flexural strength of the composites is 458MPa at room temperature, and the average fracture toughness is 19.8MPa·m1/2.

Cite this article

YUAN Ming , HUANG Zheng-Ren , DONG Shao-Ming , JIANG Dong-Liang . Carbon/Silicon Carbide Composites with Interphases Processed by Temperature-pulsing Chemical Vapor Infiltration Technique
[J]. Journal of Inorganic Materials, 2007
, 22(2) : 305 -310 . DOI: 10.3724/SP.J.1077.2007.00305

References

[1] Besmann T M, Lowden R A, Stinton D O. Overview of Chemical Vapor Infiltration. In: High-Temperature Ceramic-Matrix Composites, Woodhead, Bordeaux, France, 1993. 215.
[2] Jacques S A, Guette F, Langlais R, et al. J. Eur. Ceram. Soc., 1997, 17: 1083-1092.
[3] Jones R H, Steiner D, Heinisch H L, et al. J. Nucl. Mater., 1997, 245: 87-127.
[4] Yang W, Kohyama A, Noda T, et al. J. Nucl. Mater., 2002, 307-311: 1088-1092.
[5] Suemitsu T, Motojima S. Mater. Sci. and Eng. B, 2000, 78(2-3): 119-124.
[6] Rebillat F, Lamon J, Naslain R. J. Am. Ceram. Soc., 1998, 81(4): 965-978.
[7] Rebillat F, Lamon J, Naslain R. J. Am. Ceram. Soc., 1999, 81(9): 2315-2316.
[8] Naslain R. High-Temperature Ceramic-Matrix Composites II: Manufacturing and Materials Developmen. OH: Westerville, 1995. 23-39.
[9] Droillard C, Lamon J. J. Am. Ceram. Soc., 1996, 79(4): 849-858.
[10] Droillard C, Lamon J, Bourrat X. Mater. Res. Soc. Symp. Proc., 1995, 365: 371-376.
[11] Bertrand S, Forio P, Lamon J. J. Am. Ceram. Soc., 1999, 82(9): 2465-2473.
[12] 张守阳, 李贺军, 韩红梅. (ZHANG Shou-Yang, { et al). 无机材料学报(Journal of Inorganic Materials), 2004, 20(4): 927-932.
[13] 江东亮, 陆忠乾, 黄政仁, 等(JIANG Dong-Liang, { et al). 无机材料学报(Journal of Inorganic Materials), 1997, 12(3): 356-362.
[14] Kohyama A, Singh M, Lin H, Katoh Y. Advanced SiC/SiC Ceramic Composites: Developments
and Applications in Energy Systems. OH: Westerville, 2002. 69-76.
[15] Appiah K A, Wang Z L, Lackey W J. Thin Solid Films, 2000, 371: 114-118.
[16] 孙万昌, 李贺军, 卢锦花, 等(SUN Wan-Chang, { et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20(6): 1457-1462.
Outlines

/