Research Paper

Synthesis and Characterization of Fe2O3 and FeOOH Nanostructures Prepared by Ethylene Glycol Assisted Hydrothermal Process

  • DOU Qi-Sheng ,
  • ZHANG Hui ,
  • WU Jian-Bo ,
  • YANG De-Ren
Expand
  • 1. State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China; 2. Zhejiang Ocean University, Hangzhou 311258, China

Received date: 2006-03-27

  Revised date: 2006-07-17

  Online published: 2007-03-20

Abstract

Herein, Fe2O3 nanostructures were prepared by the ethylene glycol (EG) assisted hydrothermal process. The effects of the molar ratio of Fe 3+ and OH-, the amount of EG, the concentration and subsequent annealing on the morphology and composition were investigated. Moreover, the effects of Fe2O3 nanostructures with different morphology and size on the magnetic properties were also investigated. The results indicate that only hexagonal -Fe2O3 nanoparticles can be obtained when the molar ratio of Fe 3+ and OH-is less than 1:4 with or without the addition of EG; when the Fe 3+ and OH- is more than 1:4, the orthorhombic airplane-like FeOOH nanostructures can be achieved with the assistance of EG; while the Fe 3+ and OH-is more than 1:4, the orthorhombic FeOOH nanorods can be achieved without the assistance of EG. The airplane-like FeOOH nanostructures and FeOOH nanorods are transformed into the porous airplane-like Fe2O3 nanostructures
and Fe2O3 nanorods. With the increase of the concentration, only the size of the nanostructure is enlarged and the morphology of the nanostructure is unchanged. The different size and morphology have great influence on the magnetic properties of the Fe2O3.

Cite this article

DOU Qi-Sheng , ZHANG Hui , WU Jian-Bo , YANG De-Ren . Synthesis and Characterization of Fe2O3 and FeOOH Nanostructures Prepared by Ethylene Glycol Assisted Hydrothermal Process[J]. Journal of Inorganic Materials, 2007 , 22(2) : 213 -218 . DOI: 10.3724/SP.J.1077.2007.00213

References

[1] 李金声, 谭俊茹, 张金铃(Li Jin-Sheng, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 1995, 23: 79--84.
[2] Pfaff G, Reynders P. Chem. Rev., 1999, 99: 1963--1982.
[3] 王元生, 李坚(WANG Yuan-Sheng, et al). 无机材料学报(Journal of Inorganic Materials), 1998, 13 (5): 745--750.
[4] De palma V M, Doerner M F, Ward A W. IEEE Trans. Mag., 1982, 18: 607--609.
[5] 杨玉东, 梁勇, 宋志霞, 等(YANG Yu-Dong, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (1): 225--229.
[6] Wang X, Chen X Y, Ma X, et al. Chemical Physics Letters, 2004, 384: 391--393.
[7] Chen D H, Jiao X L, Chen D R. Materials Research Bulletin, 2001, 36: 1057--1064.
[8] 刘建华, 于美, 李松美(LIU Jian-Hua). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2005, 21 (3): 429--432.
[9] Lian S Y, Wang E B, Kang Z H, et al. Solid State Communications, 2004, 129 (8): 485--490.
[10] 董睿, 姜继森, 杨燮龙(DONG Rui, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (5): 967--972.
[11] Si S F, Li C H, Wang X, et al. Crystal Growth & Design, 2005, 5 (2): 391--393.
[12] Fu Y Y, Chen J, Zhang H. Chemical Physics Letters, 2001, 350: 491--494.
[13] William W Y, Joshua C F, Cafer T Y, et al. Chemical Communication, 2004, 20: 2306--2307.
[14] Zhang Z, Wei B Q, Ajayan P M. Appl. Phys. Lett., 2001, 79: 4207--4209.
[15] Dhage S R, Khollam Y B, Potdar H S, et al. Materials Letters, 2002, 57: 457--462.
[16] Diamandescu L, Mihaila-Tarabasanu D, Popescu-Pogrion N, et al. Ceramics International, 1999, 25: 689--692.
[17] Li S Z, Zhang H, Wu J B, et al. Crystal Growth & Design, 2006, 6: 351--353.
[18] Li S Z, Zhang H, Ji Y J, et al. Nanotechnology, 2004, 15: 1428--1432.
[19] Raming T P, Winnubst A J A, Van Kats C M, et al. J. Colloid Interface Sci., 2002, 249: 346--350.
Outlines

/