Research Paper

Hydrothermal Synthesis of Negative Thermal Expansion Material ZrW1.7Mo0.3O8 Powder

  • LIU Qin-Qin ,
  • YANG Juan ,
  • SUN Xiu-Juan ,
  • CHENG Xiao-Nong
Expand
  • School of Material Science and Engineering, Jiangsu University,
    Zhenjiang 212013, China

Received date: 2006-01-23

  Revised date: 2006-05-08

  Online published: 2007-01-20

Abstract

The negative thermal expansion material cubic phase ZrW1.7Mo0.3O8 powder was synthesized by using zirconium oxynitric, ammonium tungstate and ammonium molydbate as raw materials. X-ray powder diffraction (XRD), thermogravimetric analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron
micrograph (SEM) were used to study the crytallization process of the precursor, crystallinity and crystal morphology of the resulted product.
The results show that pure cubic ZrW1.7Mo0.3O8 are prepared, and the particle size distribution is relatively uniform. In the temperature range from ambient temperature to 700℃, the intrinsic and macro thermal expansion coefficients of cubic ZrW1.7Mo0.3O8 are -6.61×10-6K-1 and -5.76×10-6K-1, respectively.

Cite this article

LIU Qin-Qin , YANG Juan , SUN Xiu-Juan , CHENG Xiao-Nong . Hydrothermal Synthesis of Negative Thermal Expansion Material ZrW1.7Mo0.3O8 Powder[J]. Journal of Inorganic Materials, 2007 , 22(1) : 70 -74 . DOI: 10.3724/SP.J.1077.2007.00070

References


[1] Lind C, Wilkinson A P, Hu Z B, et al. Chem. Mater., 1998, 10: 2335--2337.
[2] Mary T A, Evans J S O, Vogt T, et al. Science, 1996, 272: 90--92.
[3] Evans J S O, Mary T A, Vogt T, et al. Chem. Mater., 1996, 8: 2809--2823.
[4] Lind C, Van Derveer D G, Wilkinson A P, et al. Chem. Mater., 2001, 13: 487--490.
[5] Lind C, Wilkinson A P. Sol-Gel Sci. Technol., 2002, 25: 51--56.
[6] Kameswari U, Sleight A W, Evans J S O. Inter. J. Inorg. Mater., 2000, 2: 333--339.
[7] Pryde K A A, Hammonds K D, Dove M A. Phys., 1996, 8: 973--979.
[8] Verdon C, Dunand D C. Scr. Mater., 1997, 36: 1075--1080.
[9] Holzer H, Dunand D C. J. Mater. Res., 1999, 14: 780--789.
[10] Closmann C, Sleight A W. J. Solid State Chem., 1998, 139: 424--426.
[11] Lind C, Wilkinson A P, Rawn C J, et al. J. Mater. Chem., 2001, 11: 3354--3361.
[12] 刘克文, 黄令, 赵新华. 无机化学学报, 2004, 20 (11): 1357--1359.
[13] 邓学彬, 赵新华, 韩京萨. 无机化学学报, 2005, 21 (9): 1357--1362.
[14] 李汝军, 施尔畏, 郑燕青, 等(LI Wen-Jun, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (5): 777--786.
[15] 陈友存, 张元广, 周根陶(CHEN You-Cun, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (5): 1173--1176.
[16] DONG C. J. Appl. Cryst., 1999, 32: 838--841.
[17] 邢奇凤, 邢献然, 杜凌, 等. 金属学报, 2005, 41 (16): 669--672.
[18] 沈容, 王天民, 白海龙, 等. 材料工程, 2003, 3: 3--6.
[19] Evans J S O, Mary T A, Vogt T, et al. Chem. Mater., 1996, 8: 2809--2823.
[20] 杨群保, 李永祥, 殷庆瑞, 等(YANG Qun-Bao, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (6): 1135--1139.
[21] 沈容, 王天民. 稀有金属与材料工程, 2004, 33 (1): 91--95.

Outlines

/