Research Paper

Ultrasonic Study of the Stability of the Charge Ordering in (Nd0.75Na0.25)1-x(Nd0.5Ca0.5)xMnO3

  • JIANG Liang ,
  • KONG Hui ,
  • LIU Yi ,
  • SU Jin-Rui ,
  • ZHU Chang-Fei
Expand
  • Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

Received date: 2006-03-01

  Revised date: 2006-05-08

  Online published: 2007-01-20

Abstract

The electrical resistivity, magnetization, and ultrasonic velocity were investigated systematically in polycrystalline (Nd0.75Na0.25)1-x(Nd0.5Ca0.5)xMnO3 (x=0, 0.25, 0.5, 0.75, 1). A charge ordering transition was observed in
all samples through resistivity and magnetization measurements. With increasing Na content, the charge ordering transition temperature (Tco)
shifts to lower temperature, the magnetization of the system is strengthened
and charge ordering becomes more unstable and short-ranged. It is found that
the longitudinal sound velocity shows a dramatic softening and stiffening around Tco. The ultrasonic anomaly near Tco indicates the existence of strong electron-phonon interaction, which originates from Jahn-Teller effect of Mn3+. By fitting the experimental longitudinal modulus above Tco with the cooperative
Jahn-Teller theory, one can establish that the Jahn-Teller coupling energy EJT decreases with increasing Na content. The analysis of experimental results suggests that the charge mismatch should be the main reason for the suppression of the charge ordering and the weakening of cooperative Jahn-Teller effect.

Cite this article

JIANG Liang , KONG Hui , LIU Yi , SU Jin-Rui , ZHU Chang-Fei . Ultrasonic Study of the Stability of the Charge Ordering in (Nd0.75Na0.25)1-x(Nd0.5Ca0.5)xMnO3[J]. Journal of Inorganic Materials, 2007 , 22(1) : 93 -96 . DOI: 10.3724/SP.J.1077.2007.00093

References

[1] Helmolt R, Wecker J, Holzapfel B, et al. Phys. Rev. Lett., 1993, 71: 2331--2333.
[2] Jin S, Tiefel T, Ramesh R, et al. Science, 1994, 264: 413--415.
[3] Chahara K, Ohno T, Kasai M, et al. Appl. Phys. Lett., 1993, 63: 1990--1992. [4] Gu J, Ogale B, Rajeswari M, et al. Appl. Phys. Lett., 1998, 72: 1113--1115.
[5] 陈春霞(Chen Chun-Xia). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (1): 1--12.
[6] Ye S L, Song W H, Dai J M, et al. J. Appl. Phys., 2001, 90: 2943--2948.
[7] Coey J M D, Viret M, Ranno L, et al. Phys. Rev. Lett., 1995, 75: 3910--3913.
[8] Ramirez A P, Schiffer P, Cheong S W, et al. Phys. Rev. Lett., 1996, 76: 3188--3191.
[9] Zhu C F, Zheng R K, Su J R, et al. Appl. Phys. Lett., 1999, 74: 3504--3506.
[10] Zhu Changfei, Zheng Renkui. J. Phys, Condens. Matter, 1999, 11: 8505--8510.
[11] Zheng R K, Zhu C F, Xie J Q, et al. Phys. Rev., B, 2001, 63: (024427-1)--(024427-4).
[12] Shannon R D. Acta. Crystallogr., A, 1976, 32: 751--761.
[13] Leisure R G, Moss R W. Phys. Rev., 1969, 188: 840--844.
[14] Golding Brage. Phys. Rev. Lett., 1968, 20: 5--7.
[15] Cankurtaran M, Saunders G A, Goretta K C, et al. Phys. Rev., B, 1992, 46: 1157--1165.
[16] Melcher R L. Physical Acoustics, edited by Mason W P and Thurston R N. New York: Academic, 1976, 12: 1--77.
[17] Hazama H, Goto T, Nemoto Y, et al. Phys. Rev., B, 2000, 62: 15012--15020. [18] Kugel K I, Khomskii D I. Usp. Fiz. Nauk, 1982, 136: 621-627. [ Sov. Phys. Usp, 1982, 25: 231--237].
[19] Liu X J, Jiang E Y, Li Z Q, et al. Physica, B, 2004, 348: 146--150.
Outlines

/