Research Paper

Effect of Te Doping on Thermoelectric Property of SryCo4Sb12-xTex Compounds

  • ZHAO Xue-Ying ,
  • BAI Sheng-Qiang ,
  • LI Xiao-Ya ,
  • ZHOU Yan-Fei ,
  • CHEN Li-Dong
Expand
  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2008-11-19

  Revised date: 2009-01-07

  Online published: 2009-07-20

Abstract

Skutterudite compounds, SryCo4Sb12-xTex, were synthesized by melting method and SPS method, the thermal and electrical properties were measured in the temperature range from 300K to 850K. Both carrier concentration and electrical conductivity of SryCo4Sb12-xTex compounds are higher than those of the matrix with similar Sr filling fraction. The magnitude of Seebeck coefficient is increased in comparison with that of matrix with similar carrier concentration, especially at high temperature. Lattice thermal conductivity is further decreased due to the extra electron-phonon scattering mode introduced by Te doping. The maximum ZT value of 1.0 is obtained for Sr0.18Co4Sb11.95Te0.05 at 850K, which is improved by 35% compared with that of Sr0.17Co4Sb12.

Cite this article

ZHAO Xue-Ying , BAI Sheng-Qiang , LI Xiao-Ya , ZHOU Yan-Fei , CHEN Li-Dong . Effect of Te Doping on Thermoelectric Property of SryCo4Sb12-xTex Compounds[J]. Journal of Inorganic Materials, 2009 , 24(4) : 803 -807 . DOI: 10.3724/SP.J.1077.2009.00803

References

[1]Sales B C, Mandrus D, Williams R K. Science, 1996, 272(31): 1325-1328.
[2]Sales B C, Mandrus D, Chakoumakos B C, et al. Phys. Rev. B, 1997, 56(23): 15081-15089.
[3]Nolas G S, Cohn J L, Slack G A. Phys. Rev. B, 1998, 58(1): 164-170.
[4]Meisner G P, Morelli D T, Hu S, et al. Phys. Rev. Lett., 1998, 80(16): 3551-3554.
[5]唐新峰, 陈立东,後腾孝, 等.物理学报, 2000, 49(6): 1120-1123.
[6]赵雪盈, 史 迅, 陈立东, 等 (ZHAO Xue-Ying, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21(2): 392-396.
[7]Jr Lamberton G A, Bhattacharya S, Littleton IV R T, et al. Appl. Phys. Lett., 2002, 80(4): 598-600.
[8]Kuznetsov V L, Kuznetsova L A, Rowe D M. J. Phys.: Condens. Matter, 2003, 15(29): 5035-5048.
[9]Nolas G S, Kaeser M, Littleton IV R T, et al. Appl. Phys. Lett., 2000, 77(12): 1855-1857.
[10]Chen L D, Kawahara T, Tang X F, et al. J. Appl. Phys., 2001, 90(4): 1864-1868.
[11]Puyet M, Lenoir B, Dauscher A, et al. J. Appl. Phys., 2004, 95(9): 4852-4855.
[12]Zhao X Y, Shi X, Chen L D, et al. J. Appl. Phys., 2006, 99(5): 053711-1-4.
[13]Pei Y Z, Chen L D, Zhang W, et al. Appl. Phys. Lett., 2006, 89(22): 221107-1-3.
[14]Sales B C, Chakoumakos B C, Mandrus D. Phys. Rev. B, 2000, 61(4): 2475-2481.
[15]He T, Chen J, Rosenfeld H D, et al. Chem. Mater., 2006, 18(3): 759-762.
[16]唐新峰, 陈立东, 後腾孝, 等.物理学报, 2002, 51(12): 2823-2828.
[17]Puyet M, Dauscher A, Lenoir B, et al. J. Appl. Phys., 2005, 97(8): 083712-1-4.
[18]Pei Y Z, Chen L D, Bai S Q, et al. Scrip. Mater., 2007, 56(1): 621-624.
[19]糜建立, 赵新兵, 朱铁军, 等(MI Jian-Li, et al).无机材料学报(Journal of Inorganic Materials), 2007,22(5):869-872.
[20]Nagamoto Y, Tanaka K, Koyanagi T. Proc. int. Conf. on Thermoelectrics (17th), Nagoya, Jpn. 1998: 302-305.
[21]Sharp J W, Jones E C, Williams R K, et al. J. Appl. Phys., 1995, 78(2): 1013-1018.
[22]Li X Y, Chen L D, Fan J F, et al. J. Appl. Phys., 2005, 98(8): 083702-1-4.
[23]Wojciechowski K T, Tobola J, Leszczynski J. J. Alloys Compd., 2003, 361(1): 19-27.
[24]Wojciechowski Krzysztof T.Mater. Res. Bull., 2002, 37(12): 2023-2033.
[25]Caillat T, Borschevsky A, Fleurial J P. J. Appl. Phys., 1996, 80(8): 4442-4449.
[26]Liu Wei-Shu, Zhang Bo-Ping, Li Jing-Feng, et al. J. Appl. Phys., 2007, 102(10): 103717-1-7.
[27]Jung Jae-Yong, Ur Soon-Chul, Kim Il-Ho, Mater. Chem. Phys., 2008, 108(1): 431-434.
Outlines

/