Research Paper

Preparation of TiO2 Aerogels by Ambient Pressure Drying

  • HU Jiu-Gang ,
  • CHEN Qi-Yuan ,
  • LI Jie ,
  • LU Bin ,
  • LI Peng-Ju
Expand
  • 1. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; 2. School of Materials Science and Engineering, Central South University, Changsha 410083, China

Received date: 2008-10-21

  Revised date: 2008-12-30

  Online published: 2009-07-20

Abstract

TiO2 aerogels were prepared by sol-gel method at ambient pressure using tetrabutyl titanate as raw material, formamide as drying control chemical additive, tetralthyl orthosilcate(TEOS)/ethanol as pore fluids extractant. The structural properties of aerogel samples were characterized by means of XRD, BET, TEM, SEM, EDS and FT-IR, etc. Experimental results show that asprepared TiO2 aerogel is in amorphous state with the apparent density of 0.375g/cm3, the specific surface area of 523m2/g and the average pore size of about 9.9nm. After calcinated at 850℃ in air for 4h, the sampletransforms from amorphous state to anatasetype crystal, while its’ pore volume shrinks and average pore size increases to 16.3nm, the specific surface area reduces to 208m2/g. TiO2 aerogel prepared by the above method presents excellent thermal stability and high specific surface area.

Cite this article

HU Jiu-Gang , CHEN Qi-Yuan , LI Jie , LU Bin , LI Peng-Ju . Preparation of TiO2 Aerogels by Ambient Pressure Drying[J]. Journal of Inorganic Materials, 2009 , 24(4) : 685 -689 . DOI: 10.3724/SP.J.1077.2009.00685

References

[1]Fujishima A, Zhang X T, Tryk D A. Surface Science Reports, 2008, 63(12): 515-582.
[2]Fujishima A, Honda K. Nature, 1972, 238(5358): 37-38.
[3]Liu S, Jaffrezic N, Guillard C. Applied Surface Science, 2008, 255(5): 2704-2709.
[4]张 峰, 张 歆(Zhang Feng, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21(5):1268-1272.
[5]Stengl V, Bakardjieva S,Subrt J, et al. Microporous and Mesoporous Materials, 2006, 91(1/2/3):1-6.
[6]Ismail A A, Ibrahim I A. Applied Catalysis A: General, 2008, 346(1/2):200-205.
[7]Cao S L, Yeung K L, Yue P L. Applied Catalysis B: Environmental, 2007, 76(1/2):64-72.
[8]Liu M X, Gan L H, Pang Y C, et al. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 317(1/2/3): 496-503.
[9]Zhang H X,He X D,He F. Journal of Alloys and Compounds, 2009,472(1/2): 194-197.
[10]庞颖聪, 甘礼华, 郝志显, 等. 物理化学学报, 2005, 21(12):1363-1367.
[11]Kumar S R, Suresh C, Vasudevan A K,et al. Materials Letters, 1999,38(3):161-166.
[12]格雷格 S J, 辛K S W著, 高敬琮,刘希尧译. 吸附、比表面与空隙率. 北京:化学工业出版社,1989:118-132.
[13]de Bore J H. The structure and properties of porous materials. London: Butterworth, 1958:68.
[14]Dutoit D C M, Schneider M, Baiker A. Journal of Catalysis,1995, 153(1):165-176.
[15]何 飞, 赫晓东, 李 垚. 材料工程, 2006, (suppl.):338-344.
[16]张敬畅, 高玲玲, 曹维良. 无机化学学报, 2005, 21(5):638-642.
[17]Cozzolino M, Serio M D, Tesser R, et al. Applied Catalysis A: General, 2007, 325(2): 256-262.
Outlines

/