Research Paper

Novel Photocatalyst ZrW2O7(OH)2(H2O)2 for Photocatalytic H2 and O2 Evolution from Water Splitting

  • JIANG Li ,
  • YUAN Jian ,
  • SHANGGUAN Wen-Feng
Expand
  • (Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China)

Received date: 2009-04-10

  Revised date: 2009-06-26

  Online published: 2010-01-24

Abstract

ZrW2O7(OH)2(H2O)2 powder was prepared by a hydrothermal reaction method and its thermal decomposition property, crystal structure, photon absorption property and specific surface area were characterized by TG-DTA, XRD, DRS and BET, respectively. Its photocatalytic activity for H2 and O2 evolution from water splitting under UV light irradiation was examined in the presence of CH3OH as electron donor and AgNO3 as electron scavenger. The results show that ZrW2O7(OH)2(H2O)2 is crystallized well in tetragonal phase, with absorption edge of 310nm, band gap energy of 3.9eV, and specific surface area of 5.9m2/g. The average rate of H2 evolution over 0.3wt% Pt/ZrW2O7(OH)2(H2O)2 is 3.7μmol/h and the average rate of O2 evolution over ZrW2O7(OH)2(H2O)2 is 27.8μmol/h, respectively. It is concluded that the hydroxy group containing ZrW2O7(OH)2(H2O)2 has suitable band structure and possesses the photocatalytic ability to split water.

Cite this article

JIANG Li , YUAN Jian , SHANGGUAN Wen-Feng . Novel Photocatalyst ZrW2O7(OH)2(H2O)2 for Photocatalytic H2 and O2 Evolution from Water Splitting[J]. Journal of Inorganic Materials, 2010 , 25(1) : 18 -22 . DOI: 10.3724/SP.J.1077.2010.00018

References

[1]Fujishima A, Honda K. Nature, 1972, 238(5358): 37-38.
[2]Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253-278.
[3]Osterloh F E. Chem. Mater., 2008, 20(1): 35-54.
[4]Kudo A. Inter. J. Hydrog. Energy, 2006, 31(2): 197-202.
[5]Takata T, Tanaka A, Hara M, et al. Catal. Today, 1998, 44(1-4): 17-26.
[6]Sayama K, Arakawa H. J. Phys. Chem., 1993, 97(3): 531-533.
[7]Tang J W, Ye J H. J. Mater. Chem., 2005, 15(39): 4246-4251.
[8]Kameswari U, Sleight A W, Evans J S O. Inter. J. Inorg. Mater., 2000, 2(4): 333-337.
[9]Ouyang L H, Xu Y N, Ching W Y. Phys. Rev. B, 2002, 65(11):113110-1-4.
[10]Xing Q F, Xing X R, Yu R B, et al. J. Cryst. Growth, 2005, 283(1/2): 208-214.
[11]蒋 丽, 袁 坚, 陈铭夏, 等.分子催化, 2008, 22(Suppl.): MC-316.
[12]Jiang L, Shangguan W F. Proceedings of the 10th Cross Straits Symposium on Materials, Energy and Environmental Sciences. Kyushu University, Japan, 2008: EY-1.
[13]蒋 丽, 袁 坚, 陈铭夏, 等. 功能材料, 2009, 5(40): 728-731.
[14]Dadachov M S, Lambrecht R M. J. Mater. Chem., 1997, 7(9): 1867-1870.
[15]Wakamura M, Hashimoto K, Watanabe T. Langmuir, 2003, 19(8): 3428-3431.
[16]Lei Z B, Ma G J, Liu M Y, et al. J. Catal., 2006, 237(2): 322-329.
[17]Shangguan W, Yoshida A. Inter. J. Hydrog. Energy, 1999, 24(5): 425-431.
[18]Finlayson A P, Tsaneva V N, Lyons L, et al. Phys. Stat. Sol.(a), 2006, 203(2): 327-335.
[19]上官文峰(SHANGGUAN Wen-Feng). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2001, 17(5): 619-626.
[20]Maeda K, Domen K. J. Phys. Chem. C, 2007, 111(22): 7851-7861.
[21]Xing X R, Xing Q F, Yu R B, et al. Physica B, 2006, 371(1): 81-84.
[22]Tang J W, Zou Z G, Ye J H. J. Phys. Chem. B, 2003, 107(51): 14265-14269.
[23]邢精成, 王文邓, 卞建江, 等(XING Jin-Cheng, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22(6):1075-1078.
[24]Lin X P, Huang F Q, Wang W D, et al. Appl. Catal. A, 2006, 313(2): 218-223.
Outlines

/