Research Paper

Experimental Research on Shock Synthesis of Cubic Silicon Nitride

  • LIU Yu-Sheng ,
  • YAO Huai ,
  • ZHANG Fu-Ping ,
  • HE Hong-Liang ,
  • TANG Jing-You
Expand
  • 1. Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China; 2. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

Received date: 2006-03-20

  Revised date: 2006-05-29

  Online published: 2007-01-20

Abstract

Experiments using a planar metal disc flyer driven by explosives and a cylindrical chamber was designed to synthesize cubic silicon nitride with the mixtures of α-Si3N4 and copper powders as starting materials. Shockcompressed samples were successfully recovered. The recovered samples were nitrated to resolve copper, and the separated silicon nitride powders were analyzed by XRD. The results indicate that most of α- Si3N4 are transformed into cubic silicon nitride when a shock pressure larger than 50GPa and a matched shock temperature simultaneously load on α-Si3N4. The experiments provide a shock compression technique that can synthesize cubic silicon nitride in the order of gram mass in one test run, which lay the foundation for conducting further investigation on the properties and performance of cubic silicon nitride.

Cite this article

LIU Yu-Sheng , YAO Huai , ZHANG Fu-Ping , HE Hong-Liang , TANG Jing-You . Experimental Research on Shock Synthesis of Cubic Silicon Nitride[J]. Journal of Inorganic Materials, 2007 , 22(1) : 159 -162 . DOI: 10.3724/SP.J.1077.2007.00159

References

[1] Zerr A, Mliehe M, Serghiou G, et al. Nature, 1999, 400: 340--342.
[2] Leger J M, Haines J, Schmidt M, et al. Nature, 1996, 383: 401.
[3] Mo S, Ouyang L, Ching W Y. Phys. Rev. Lett., 1999, 83 (24): 5046--5049.
[4] Sekine T, He H L, Kobayashi T, et al. Appl. Phys. Lett., 2000, 76(25): 3706--3708.
[5] He Hongliang, Sekine T, Kobayashi T, et al. Phys. Rev. B, 2000, 62: (17): 11412--11417.
[6] Jiang J Z, Stahl K, Berg R W, et al. Europhys. Lett., 2000, 51(1): 62--67.
[7] Scharz M, Miehe G, Zerr A, et al. Adv. Mater., 2000, 12: 833--887.
[8] Yunoshev A S. Combs. Explos. Shock Waves, 2004, 40 (3): 370--373.
[9] Sekine T, Mitsuhashi T. Appl. Phys. Lett., 2001, 79(17): 2719--2721.
[10] Jiang J Z, Kragh F, Frost D J, et al. J. Phys.: Condens. Matter., 2001, 13: L515--L520.
[11] Tanaka I, Mizoguchi T, Sekine T, et al. Appl. Phys. Lett., 2001, 78(15): 2134--2136.
[12] 徐康, 刘建军, 贺红亮, 等(Xu Kang, {et al). 无机材料学报(Journal of Inorganic Materials), 1997, 12(5): 759--762.
[13] 经福谦. 实验物态方程导引, 第2版 北京: 科学出版社, 1999. 81--99.
[14] Geng H Y, Wu Q, Tan H, et al. Chin. Phys. Lett., 2002, 11(11): 1188--1192.
[15] 何崇智, 郗秀容, 孟庆恩, 等. X射线衍射实验技术, 第1版. 上海: 科学出版社, 1988. 152--154.
[16] Cohen L H, Klement L Jr, Kennedu G C. Phys. Rev., 1966, 145(2): 519-525.
[17] DeCarli P S, Jamieson J C. Science, 1961, 133: 1821--1823.
Outlines

/