Research Paper

Effects of Grain Sizes on the Behaviors of Microstrain and Optical Absorption for the FeS2 Films

  • LIU Yan-Hui ,
  • WANG Yang ,
  • MENG Liang
Expand
  • 1. College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China; 2. Key Laboratory of Opto-Electronic Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China

Received date: 2006-01-23

  Revised date: 2006-03-20

  Online published: 2007-01-20

Abstract

FeS2 thin films with different grain sizes were synthesized by the sulfuration reaction of Fe films with different thickness at 673K for 20h. The microstructure, microstress and optical absorption of the films were investigated. The average grain size of the FeS2 films changes from 40nm to 80nm when the film thickness changes from 120nm to 550nm. The internal microstrain, lattice distortion, absorption coefficient and energy gap decrease with the grain size increasing. The mechanism responsible for the result can be attributed to the variation of
the degree of microstress, the distribution of energy level of crystal defect
states and the height of grain boundary barrier due to the change of the
crystal planar defects density with the grain size changing.

Cite this article

LIU Yan-Hui , WANG Yang , MENG Liang . Effects of Grain Sizes on the Behaviors of Microstrain and Optical Absorption for the FeS2 Films[J]. Journal of Inorganic Materials, 2007 , 22(1) : 143 -147 . DOI: 10.3724/SP.J.1077.2007.00143

References

[1] Ares J R, Pascual A, Ferre I J, et al. Thin Solid Films, 2005, 480-481: 477--481.
[2] Liu Y H, Meng L, Zhang L. Thin Solid Films, 2005, 479 (1-2): 83--88.
[3] Ares J R, Pascual A, Ferrer I J, et al. Thin Solid Films, 2004, 451-452: 233--236.
[4] Ares J R, Pascual A, Ferrer I J, et al. Thin Solid Films, 2004, 450: 207--210.
[5] Ouertanil B, Ouerfelli J, Saadoun M. Mater. Lett., 2005, 59 (6): 734--739.
[6] Gomes A, Pereira MI da S, Mendonca M H. Electrochim. Acta., 2004, 49 (13): 2155--2165.
[7] Meng L, Liu Y H, Tian L. Mater. Res. Bull., 2003, 38 (6): 941--948.
[8] Reijnen L, Meester B, Goossens A. J. Electrochem. Soc., 2000, 147 (5): 1803--1806.
[9] 刘艳辉, 孟亮, 张秀娟. 材料研究学报, 2004, 18 (4): 373--379.
[10] 吴荣, 郑毓峰, 张校刚(WU Rong, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (4): 917--920.
[11] Hamdadou N, Khelil A, Bernede J C. Mater. Chem. Phy., 2003, 78 (3): 591--601.
[12] Heras C de las. Lifante G. J. Appl. Phys., 1997, 82 (10): 5132--5137.
[13] Krishna M G, Bhattacharya A K. Mater. Sci. Eng. B, 1997, 49 (2): 166--171.
[14] Enriquez J P, Mathew X. Sol. Energy Mater. Sol. Cells, 2003, 76 (3): 313--322.
[15] Kadam L D, Patil P S. Mater. Chem. Phy., 2001, 68 (1-3): 225--232.
[16] Tyagi P, Vedeshwar A G, Mehra N C. Physica B, 2001, 304: 166--174.
[17] Ferrer I J, S\acuteanchez C. J. Appl. Phys, 1991, 70 (5): 2641--2647.
[18] Heras C de las, Martin de Vidales J L, Ferrer I J. J. Mater. Res, 1996, 11 (1): 211--219.
[19] Li H Q, Ebrahimi F. Acta. Mater, 2003, 51 (13): 3905--3913.
[20] Kale S S, Lokhande C D. Mater. Chem. Phy., 2000, 62 (2): 103--108.
[21] Kale R B, Lokhande C D. Appl. Surf. Sci., 2004, 223 (4): 343--351.
Outlines

/