Research Paper

Photogenerated Cathodic Protection Properties of Nanosized TiO2/ Sb2O5 Coating

  • ZHOU Min-Jie ,
  • ZENG Zhen-Ou ,
  • ZHONG Li ,
  • ZHAO Guo-Peng
Expand
  • 1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China; 2. Guangzhou Etsing Plating Research Institute, Guangzhou 510170, China

Received date: 2008-09-22

  Revised date: 2008-11-10

  Online published: 2009-05-20

Abstract

Nano-sized TiO2/Sb2O5 bilayer coatings were prepared on type 304 stainless steel substrate by solgel method. Surface morphology, structure and composition of the asprepared TiO2/Sb2O5 coatings were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS). The performance of photoelectrochemical and photogenerated cathodic protection of the coatings was investigated using the electrochemical method. SEM results indicate that the coating surface is continuous, uniform and dense, XRD results show that the coating is of anatase TiO2, XPS results indicate the outer and inner coatings are mainly composed of Ti, Sb, C and O elements. Moreover, the test results of the steady potential and polarization curves demonstrate that the nanosized TiO2/Sb2O5 bilayer coating has worsen photoelectrochemical properties than the plain nanosized TiO2 coating in 3% NaCl solution. Type 304 stainless steel coated with the bilayer coating can maintain cathodic protection for 4h in the dark after irradiation by UV illumination for 1h. In addition, a novel mechanism of the photogenerated cathodic protection for the bilayer coating is put forward.

Cite this article

ZHOU Min-Jie , ZENG Zhen-Ou , ZHONG Li , ZHAO Guo-Peng . Photogenerated Cathodic Protection Properties of Nanosized TiO2/ Sb2O5 Coating[J]. Journal of Inorganic Materials, 2009 , 24(3) : 525 -530 . DOI: 10.3724/sp.j.1077.2009.00525

References

[1]Konishi T, Tsujikawa S. ZairyotoKankyo, 1997, 46(4): 709-716.
[2]Huang J, Shinohara T, Tsujikawa S. ZairyotoKankyo, 1999, 48(7):575-582.
[3]Ohko Y, Saitoh S, Tatsuma T, et al. Electrochem. Soc., 2001, 148(1): B24-28.
[4]Song Laizhou, Song Shizhe, Gao Zhiming. Journal of Materials Science and Technology, 2004, 20(5): 599-601.
[5]肖正伟,曾振欧,赵国鹏,等.电镀与涂饰, 2007,26(7):35-38.
[6]曾振欧,周民杰,肖正伟,等.华南理工大学学报,2008, 36(7):77-81.
[7]Shen G X,Chen Y C, Lin C J. Thin Solid Films, 2005, 489(5): 130-136.
[8]Shan C X, Hou XiangHui, Choy KwangLeong. Surface & Coatings Technology, 2008, 202(5): 2399-2402.
[9]Subasri R, Shinohara T.Electrochemistry Communications, 2003, 89(5): 897-902.
[10]Raghavan Subasri,Tadashi Shinohara,Kazuhiko Mori. Science and Technology of Advanced Materials, 2005, 145(6): 501-507.
[11]沈广霞,陈艺聪,李 静,等.中国腐蚀与防护学报,2006, 26(2): 109-114.
[12]Tatsuma T, Ohko Y, Saitoh S, et al.Chem. Mater., 2001, 13(7): 2838-2842.
[13]Ngaotrakanwiwat P, Tatsuma T, Saitoh S, et al.Phys. Chem. Chem. Phys., 2003, 276(5): 3234-3237.
[14]Ngaotrakanwiwat Pailin, Tatsuma Tetsu. Journal of Electroanalytical Chemistry, 2004, 573(1):263-269.
[15]Takahashi Yukina, Ngaotrakanwiwat Pailin, Tatsuma Tetsu. Electrochimica Acta, 2004, 49(2):2025-2029.
[16]沈广霞,陈艺聪,林昌健.物理化学学报,2005,21(5): 485-489.
Outlines

/