Nitrogendoped and pure TiO2 photocatalysts were synthesized by precipitation method using TiCl4 as titanium precursor. Both X-ray diffraction (XRD) and N2 adsorptiondesorption isotherms show that the asprepared samples consis of anatase phase except for trace brookite phase with mesoporous structure. X-ray photoelectron spectroscopy(XPS) confirms that the incorporated nitrogen element exists as the chemical state of NOx. The UV-Vis diffuse reflection absorption spectra (UV-Vis) reveal that the nitrogendoped TiO2 shows a new absorption region at 400-550nm. The photocatalytic activities of the nitrogendoped TiO2 utilized for the photodegradation of 4-chlorophenol (4-CP) are higher than those of the pure TiO2 under UV and visible light irradiation. The improved photocatalytic activities under UV light irradiation of the nitrogendoped TiO2 are attributed to the presence of NOx. With no influence on the energy gap of TiO2, NOx can extend the optical response of TiO2, excite more photoinduced electronsholes for photocatalysis and reduce the recombination probabilities of carriers.
LIU Hui-Jing
,
BAI Yuan
,
SUN Hong-Qi
,
JIN Wan-Qin
. Mechanism of the Doping Species Controlling the UV Photocatalytic Activity of Nitrogen Doped TiO2[J]. Journal of Inorganic Materials, 2009
, 24(3)
: 443
-447
.
DOI: 10.3724/sp.j.1077.2009.00443
[1]Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995, 95(1): 69-96.
[2]Zhao W, Ma W H, Chen C C,et al. J. Am. Chem. Soc., 2004, 126(15): 4782-4783.
[3]Sun H Q, Bai Y, Liu H J, et al. J. Phys. Chem. C, 2008, 112(34): 13304-13309.
[4]Sun H Q, Bai Y, Cheng Y P, et al. Ind. Eng. Chem. Res., 2006, 45(14): 4971-4976.
[5]Sun H Q, Bai Y, Jin W Q, et al. Solar Energy Mater. Solar Cells, 2008, 92(1): 76-83.
[6]Cheng Y P, Sun H Q, Jin W Q, et al. Chem. Eng. J., 2007, 128(23):127-133.
[7]Cheng Y P, Sun H Q, Jin W Q, et al. Chin. J. Chem. Eng., 2007, 15(2): 178-183.
[8]孙红旗, 程友萍, 金万勤,等. 化工学报, 2006, 57(7): 1570-1574.
[9]柏 源, 孙红旗, 金万勤(BAI Yuan, et al). 无机材料学报(Journal of Inorganic Materials), 2008, 23(2): 387-392.
[10]柏 源,孙红旗,刘会景,等. 高等学校化学学报,2008,29(11):2232-2238.
[11]Hong X T, Wang Z P, Cai W M, et al. Chem. Mater., 2005, 17(6): 1548-1552.
[12]Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002, 14(9): 3808-3816.
[13]Peng T Y, Song H B, Xiao J R, et al. Non-Cryst Solids, 2006, 352(30-31): 3167-3174.
[14]Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(13): 269-271.
[15]Sathish M, Viswanathan B, Viswanath R P, et al. Chem. Mater., 2005, 17(25): 6349-6353.
[16]Chen X F, Wang X C, Hou Y D, et al. J. Catal., 2008, 255(1): 59-67.
[17]Chen X B, Lou Y B, Samia A C S, et al. Adv. Func. Mater., 2005, 15(1): 41-49.
[18]Sakthivel S, Janczarek M, Kisch H. J. Phys. Chem. B, 2004, 108(50): 19384-19387.
[19]Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107(23): 5483-5486.
[20]Saha N C, Tompkins H G. J. Appl. Phys., 1992, 72(7): 3072-3079.
[21]Sato S, Nakamura R, Abe S. Appl. Catal. A, 2005, 284(1-2): 131-137.
[22]Qiu X F, Zhao Y X, Burda C. Adv. Mater., 2007, 19(22): 3995-3999.
[23]Valentin C D, Pacchioni G, Selloni A, et al. J. Phys. Chem. B, 2005, 109(23): 11414-11419.
[24]Sun H Q, Bai Y, Liu H J, et al. J. Photochem. Photobiol. A, 2009,201(1):15-22.
[25]高 濂, 郑 珊, 张青红. 纳米氧化钛光催化材料及应用, 第1版. 北京: 化学工业出版社, 2002: 15-16.