Research Paper

Mechanism of the Doping Species Controlling the UV Photocatalytic Activity of Nitrogen Doped TiO2

  • LIU Hui-Jing ,
  • BAI Yuan ,
  • SUN Hong-Qi ,
  • JIN Wan-Qin
Expand
  • State Key Laboratory of MaterialsOriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009,China

Received date: 2008-07-23

  Revised date: 2008-09-23

  Online published: 2009-05-20

Abstract

Nitrogendoped and pure TiO2 photocatalysts were synthesized by precipitation method using TiCl4 as titanium precursor. Both X-ray diffraction (XRD) and N2 adsorptiondesorption isotherms show that the asprepared samples consis of anatase phase except for trace brookite phase with mesoporous structure. X-ray photoelectron spectroscopy(XPS) confirms that the incorporated nitrogen element exists as the chemical state of NOx. The UV-Vis diffuse reflection absorption spectra (UV-Vis) reveal that the nitrogendoped TiO2 shows a new absorption region at 400-550nm. The photocatalytic activities of the nitrogendoped TiO2 utilized for the photodegradation of 4-chlorophenol (4-CP) are higher than those of the pure TiO2 under UV and visible light irradiation. The improved photocatalytic activities under UV light irradiation of the nitrogendoped TiO2 are attributed to the presence of NOx. With no influence on the energy gap of TiO2, NOx can extend the optical response of TiO2, excite more photoinduced electronsholes for photocatalysis and reduce the recombination probabilities of carriers.

Cite this article

LIU Hui-Jing , BAI Yuan , SUN Hong-Qi , JIN Wan-Qin . Mechanism of the Doping Species Controlling the UV Photocatalytic Activity of Nitrogen Doped TiO2[J]. Journal of Inorganic Materials, 2009 , 24(3) : 443 -447 . DOI: 10.3724/sp.j.1077.2009.00443

References

[1]Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995, 95(1): 69-96.
[2]Zhao W, Ma W H, Chen C C,et al. J. Am. Chem. Soc., 2004, 126(15): 4782-4783.
[3]Sun H Q, Bai Y, Liu H J, et al. J. Phys. Chem. C, 2008, 112(34): 13304-13309.
[4]Sun H Q, Bai Y, Cheng Y P, et al. Ind. Eng. Chem. Res., 2006, 45(14): 4971-4976.
[5]Sun H Q, Bai Y, Jin W Q, et al. Solar Energy Mater. Solar Cells, 2008, 92(1): 76-83.
[6]Cheng Y P, Sun H Q, Jin W Q, et al. Chem. Eng. J., 2007, 128(23):127-133.
[7]Cheng Y P, Sun H Q, Jin W Q, et al. Chin. J. Chem. Eng., 2007, 15(2): 178-183.
[8]孙红旗, 程友萍, 金万勤,等. 化工学报, 2006, 57(7): 1570-1574.
[9]柏 源, 孙红旗, 金万勤(BAI Yuan, et al). 无机材料学报(Journal of Inorganic Materials), 2008, 23(2): 387-392.
[10]柏 源,孙红旗,刘会景,等. 高等学校化学学报,2008,29(11):2232-2238.
[11]Hong X T, Wang Z P, Cai W M, et al. Chem. Mater., 2005, 17(6): 1548-1552.
[12]Yu J C, Yu J G, Ho W K, et al. Chem. Mater., 2002, 14(9): 3808-3816.
[13]Peng T Y, Song H B, Xiao J R, et al. Non-Cryst Solids, 2006, 352(30-31): 3167-3174.
[14]Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(13): 269-271.
[15]Sathish M, Viswanathan B, Viswanath R P, et al. Chem. Mater., 2005, 17(25): 6349-6353.
[16]Chen X F, Wang X C, Hou Y D, et al. J. Catal., 2008, 255(1): 59-67.
[17]Chen X B, Lou Y B, Samia A C S, et al. Adv. Func. Mater., 2005, 15(1): 41-49.
[18]Sakthivel S, Janczarek M, Kisch H. J. Phys. Chem. B, 2004, 108(50): 19384-19387.
[19]Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107(23): 5483-5486.
[20]Saha N C, Tompkins H G. J. Appl. Phys., 1992, 72(7): 3072-3079.
[21]Sato S, Nakamura R, Abe S. Appl. Catal. A, 2005, 284(1-2): 131-137.
[22]Qiu X F, Zhao Y X, Burda C. Adv. Mater., 2007, 19(22): 3995-3999.
[23]Valentin C D, Pacchioni G, Selloni A, et al. J. Phys. Chem. B, 2005, 109(23): 11414-11419.
[24]Sun H Q, Bai Y, Liu H J, et al. J. Photochem. Photobiol. A, 2009,201(1):15-22.
[25]高 濂, 郑 珊, 张青红. 纳米氧化钛光催化材料及应用, 第1版. 北京: 化学工业出版社, 2002: 15-16.
Outlines

/