Research Paper

Effect of Organic Modification Temperature on the Microstructure of Nanoscale Titania

  • YAO Chao ,
  • DING Yong-Hong ,
  • LI Wei-Min ,
  • WANG Mao-Hua ,
  • LU Lu-De ,
  • WANG Xin
Expand
  • 1. Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; 2.Department of Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, China

Received date: 2008-09-12

  Revised date: 2008-12-31

  Online published: 2009-05-20

Abstract

Nanoscale titania aqueous dispersion was prepared firstly, and then nanotitania particles was transfered into methylbenzene in which stearic acid was dissolved from water by distillation so that the surface modification was carried out in organic system. Nanoscale titania was modified with stearic acid at different temperatures.The samples were characterized by Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscope (XPS), thermogravimetry(TG), derivative thermogravimetry (DTG) and transmission electron microscopye(TEM). The results show that stearic acid is bound on the surface of nanoscale titania by bidentate structure, and even monolayer coverage is obtained. With modification temperature increasing, the crystallite size of nanoscale titania increase, the mass fraction of chemisorbed stearic acid on the surface of nanoscale titania decrease, and the thickness of stearic acid layer changes from 1nm to 2-3nm.The modification temperature has little effect on interactions between stearic acid and titania.

Cite this article

YAO Chao , DING Yong-Hong , LI Wei-Min , WANG Mao-Hua , LU Lu-De , WANG Xin . Effect of Organic Modification Temperature on the Microstructure of Nanoscale Titania[J]. Journal of Inorganic Materials, 2009 , 24(3) : 438 -442 . DOI: 10.3724/sp.j.1077.2009.00438

References

1]Siddiquey I A,Ukaj E, Furusawa T, et al. Materials Chemistry and Physics, 2007, 116(6):162-168.
[2]Kobayashi M, Kalriess W. Cosmetics & Toiletries, 1997, 112(6): 83-86.
[3]Kuo C Y, Lu S Y. Nanotechnology, 2008, 19(9):957051-957058.
[4]Koo H J, Kim Y J, Lee Y H, et al.Advanced Materials, 2008, 20(1): 195-199.
[5]Yurdakal S, Palmisano G, Loddo V, et al. Journal of the American Chemical Society,2008, 130(5): 1568-1569.
[6]姚 超,高国生,林西平, 等(YAO Chao, et al).无机材料学报(Journal of Inorganic Materials),2006, 21(2): 315-321.
[7]Nakayama N,Hayashi T. Colloids and Surfaces, 2008, 317(1-3): 543-550.
[8]Thistlethwaite P J, Hook M S. Langmuir, 2000, 16(11): 4993-4998.
[9]张立德, 牟季美.纳米材料与纳米结构. 北京:科学出版社,2001:2.
[10]Nussbaumer R J, Caseri W,Tervoort T, et al. Journal of Nanoparticle Research,2002, 4(4): 319-323.
[11]邹 玲, 乌学东, 陈海刚, 等. 物理化学学报, 2001, 7(4): 305-309.
[12]李宗威, 朱永法. 化学学报, 2003,61(9): 1484-1487.
[13]蒋晓明, 王晓勇, 陈月珠. 石油学报(石油加工),2002, 8(1): 61-65.
[14]Shu Y, Hitoshi H, Daisaku M, et al. Journal of Photochemistry and Photobiology A: Chemistry,2004, 163(1-2): 1-8.
[15]Lu Y Q, Miller J D. J.Colloid Interface Sci., 2002, 256(1): 41-52.
[16]Capelle H A, Britcher L G, Morris G E. J.Colloid Interface Sci., 2003, 268(2): 293-300.
[17]肖方玉, 姚钟麒, 金道森. 物理化学学报, 1995, 11(2): 118-122.
Outlines

/