Research Paper

Synthesis of Ordered Mesoporous TiO2 from Industrial Titanyl Sulfate
Solution and its Formation Mechanism

  • TIAN Cong-Xue ,
  • ZHANG Zhao
Expand
  • 1.School of Chemical Engineering,Sichuan University,Chengdu 610065,China; 2.Panzhihua University,Panzhihua 617000,China

Received date: 2008-06-27

  Revised date: 2008-08-18

  Online published: 2009-03-20

Abstract

Using composite template (CTAB and P123) as structuredirecting agents, industrial titanyl sulfate as Ti source, the precursor of mesoporous TiO2 was prepared via controlling the hydrolysis and condensation rate of industrial TiOSO4, self-assembly rate of template and pH value of solution. The asprepared materials were characterized by XRD, HRTEM, SAED and nitrogen adsorptiondesorption.Ordered mesoporous anatase titania is obtained after template removal, with hexaganol mesopore, SBET of 205.7m2/g,average pore diameter of 3.28nm. The formatiom process of mesopore belongs to cooperative formation mechanism, i.e. the hydrolysis colloid particles of titanium and composite template interact through static force and hydrogen bond on the interface, cooperating to form mesopore.

Cite this article

TIAN Cong-Xue , ZHANG Zhao . Synthesis of Ordered Mesoporous TiO2 from Industrial Titanyl Sulfate
Solution and its Formation Mechanism[J]. Journal of Inorganic Materials, 2009
, 24(2) : 225 -228 . DOI: 10.3724/SP.J.1077.2009.00225

References

[1]Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359(6397): 710-712.
[2]Stark W J, Wegner K, Pratsinis S E, et al. J. Catal., 2001,197(1):182-191.
[3]Thelakkat M, Schmitz C, Schmidt H W. Adv. Mater., 2002, 14(8): 577-581.
[4]Niederberger M, Bart M B. Chem. Mater., 2002, 14(10): 4364-4370.
[5]Morris D, Egdell R G. J. Mater. Chem., 2001, 11(12): 3207-3210.
[6]Puzenat E, Pichat P. J. Photochem. Photobiol. A: Chem, 2003,160(1-2): 127-133.
[7]Antonelli D M, Ying J Y. Angew. Chem. Int. Ed. Engl., 1995, 34(18): 2014-2017.
[8]Gibaud A, Grosso D, Smarsly B, et al. J. Phys. Chem. B, 2003,107(57): 6114-6118.
[9]Kambe S, Murakoshi K, Kitamura T, et al. Sol. Energ. Mat. Sol. Cells., 2000,61(4): 427-441.
[10]Yu J C, Yu J, Zhang L, et al. J. Photochem. Photobiol. A: Chem., 2002,148(1-3): 263-271.
[11]Tan Ruiqin, He Yu, Zhu Yongfa,et al. Journal of Materials Science, 2003, 38: 3973-3978.
[12]Kolen′ko Y V, Maximov V D, Garshev A V, et al. Chem. Phys. Lett., 2004, 388(4-6): 411-415.
[13]Luca V, Watson J N, Ruschena M, et al. Chem. Mater., 2006, 18(5): 1156-1168.
[14]田从学,张 昭,何菁萍,等. 稀有金属材料与工程, 2006, 35(Z2): 185-189.
[15]田从学,张 昭,沈 俊,等. 稀有金属材料与工程, 2007, 35(Z3): 631-636.
[16]柳 强,田从学,张 昭. 中国有色金属学报, 2007,17(5): 807-812.
[17]Devi G S, Hyodo T, Shimizu Y, et al. Sensor Actuat BChem., 2002, 87(1):122-129.
[18]张立德. 纳米材料. 北京:化学工业出版社,2000.
[19]Pedersen J S, Gerstenberg M C. Colloids Surf. A, 2003, 213(2-3): 175-187.
[20]Zhang K W, Khan A. Macromolecules, 1995, 28(11): 3807-3812.
[21]Yun H S, Miyazawa K, Zhou H S, et al. Adv. Mater., 2001, 13(18):1377-1380.
[22]黄惠忠. 纳米材料分析. 北京:化学工业出版社,2003: 254.
[23]赵国玺, 朱王步瑶. 表面活性剂作用原理. 北京:中国轻工业出版社,2003.
[24]Tanford C. The hydrophobic effect, New York: WileyIntersciece, 1973: 52.
[25]Kim J M, Sakamoto Y, Hwang Y K, et al. J. Phys. Chem. B, 2002, 106(10): 2552-2558.
Outlines

/