Manganese oxides nanofibers were successfully fabricated by an electrospinning method and its electrochemical behavior was investigated as three-dimensional (3D) architecture of cathodic materials. Scanning electron microscope, X-ray diffraction and the discharge/charge curves were used to characterize their structures and electrochemical properties. Manganese oxides nanofibers are achieved after calcination at 450℃. The high reversible discharge capacity reaches 160mAh/g and the discharge capacity is about 132.5mAh/g with capacity loss less than 1.0% per cycle in 50 cycling. SEM observations show that the structure of manganese oxides nanofibers is stable without the mechanical destruction of nanofibers during the Li+ ion intercalation and deintercalation. The results demonstrate that manganese oxides nanofibers are promising cathodic materials for 3D lithium batteries.
SUN Ke
,
LU Hai-Wei
,
LI Da
,
ZENG Wei
,
LI Yue-Sheng
,
FU Zheng-Wen
. Electrospun Manganese Oxides Nanofibers Electrode for Lithium Ion Batteries[J]. Journal of Inorganic Materials, 2009
, 24(2)
: 357
-360
.
DOI: 10.3724/SP.J.1077.2009.00357
[1]Long J W, Dunn B, Rolison D R, et al. Chem.Rev., 2004, 104: 4463-4492.
[2]Hart R W, White H S, Dunn B, et al. Electrochem. Comm., 2003, 5(2): 120-123.
[3]Wang C, Taherabadi L, Jia G, et al. Electrochem. Solid-State Letts., 2004, 7(11): A435-A438.
[4]Baure G, Kown C W, Lee G G, et al. Electrochemical Society, Pennington, NJ, 2002. PV2002-25.
[5]Lytle J C, Yan H, Ergang N S, et al. J. Mater. Chem., 2004, 14(10): 1616-1622.
[6]Stein A, Schroden R C. Curr. Opin. Solid State Mater. Sci., 2001, 5(6): 553-564.
[7]Jiao F, Shaju K M, Bruce P G. Angew. Chem. Int. Ed., 2005, 44(40): 6550-6553.
[8]Sakamoto J S, Dunn B. J. Mater. Chem., 2002, 12(10): 2859-2861.
[9]Li D, Xia Y N. Nano Letters, 2003, 3(4): 555-560.
[10]Li D, Ouyang G, McCann J T, et al. Nano Letters, 2005, 5(5): 913-916.
[11]Li D, Wang Y, Xia Y N. Nano Letters, 2003, 3(8): 1167-1171.
[12]Bueno P R, Leite E R. J. Phys. Chem. B, 2003, 107(34): 8868-8877.
[13]Gu Y, Chen D, Jiao X. J. Phy. Chem. B, 2005, 109(38): 17901-17908.
[14]Gao X P, Bao J L, Pan G L, et al. J. Phys. Chem. B, 2004, 108(18): 5547-5551.
[15]Johnson C S. J. Power Sources, 2007, 165(2): 559-565.
[16]Ikeda H, Lithium Batteries, Gabano J P. Ed., London: Academic Press, 1983: 169.
[17]Johnson C S, Mansuetto M F, Thackeray M M. J. Electrochem. Soc., 1997, 144(7): 2279-2283.
[18]Fan Q, Whittingham M S. Electrochem. SolidState Lett., 2005, 10(3): A48-A50.
[19]Shao C L, Guan H Y, Liu Y C, et al. J. Solid State Chem., 2004, 177(7): 2628-2631.
[20]马淳安, 楼颖伟, 赵峰鸣,等. 中国有色金属学报, 2004, 14(10): 1736-1740.
[21]门传玲,夏 熙. 电池,1997, 27(5): 205-208.
[22]Thackeray M M. Prog. Solid St. Chem., 1997, 25(12): 1-71.
[23]Thackeray M M, David W I F, Goodenough J B. Mat. Res. Bull., 1982, 17(3): 785-793.
[24]Thackeray M M, David W I F, Bruce P G, et al. Mat. Res. Bull., 1983, 18(4): 461-472.
[25]Johnson C S, Dees D W, Mansuetto M F. J. Power Sources, 1997, 68(2): 570-577.
[26]Sugantha M, Ramakrishnan P A, Hermann A M,et al. International J. Hydrogen Energy, 2003, 28(6): 597-600.
[27]Das S R, Majumder S B, Katiyar R S. J. Power Sources, 2005, 139(1-2): 261-268.
[28]夏 熙.电池,2005, 35(4): 276-280.