Research Paper

Corrosion Behavior of AlPO4 as Environmental Barrier Coating in Water Vapor Enviroment

  • CHEN Xian-Hong ,
  • CHENG Lai-Fei ,
  • WANG Yi-Guang ,
  • ZHANG Li-Tong ,
  • HONG Zhi-Liang ,
  • WU Ya-Hui
Expand
  • National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2008-06-02

  Revised date: 2008-08-21

  Online published: 2009-03-20

Abstract

AlPO4 was synthesized by a Sol-Gel method. Its coefficient of thermal expansion (CTE) was measured by dilatometer. Its corrosion behavior was tested in an environment of 50vol%H2O/50vol%O2 with a flow rate of 0.085cm/s at 1350℃. The phases and composition of the samples were analyzed by X-ray diffraction and Energy Dispersive Spectroscope. The microstructures of AlPO4 were characterized by Scanning Electron Microscope. The results indicate that the CTE of AlPO4 matches with that of C/SiC composites and its corrosion resistance is much better than that of SiC. However, the decomposition of AlPO4 at high temperatures is the main problem in the water vapor enviroment, which will be accelerated in combination with silica.

Cite this article

CHEN Xian-Hong , CHENG Lai-Fei , WANG Yi-Guang , ZHANG Li-Tong , HONG Zhi-Liang , WU Ya-Hui . Corrosion Behavior of AlPO4 as Environmental Barrier Coating in Water Vapor Enviroment[J]. Journal of Inorganic Materials, 2009 , 24(2) : 397 -401 . DOI: 10.3724/SP.J.1077.2009.00397

References

[1]张立同, 成来飞, 徐永东. 航空制造技术, 2003, 1:24-32.
[2]Opila E J. J. Am. Ceram. Soc., 2003, 86(8):1238-1248.
[3]Opila E J. J. Am. Ceram. Soc., 1997, 80(1):197-205.
[4]Opila E J, Nguyen Q N. J. Am. Ceram. Soc., 1998, 81(7):1949-1952.
[5]Opila E J, Fox D S, Jacobson N S. J. Am. Ceram. Soc., 1997, 80(4):1009-1012.
[6]Robinson R C, Smialek J L. J. Am. Ceram. Soc., 1999, 82(7): 1817-1825.
[7]Jacobson N S. J. Am. Ceram. Soc., 1993, 76(1):3-28.
[8]Jacobson N S, Opila E J, Myers D L, et al. J. Chem. Thermodynamics, 2005, 37(10):1130-1137.
[9]Opila E J, Smialek J L, Robinson R C, et al. J. Am. Ceram. Soc., 1999, 82(7):1826-1834.
[10]Opila E J. J. Am. Ceram. Soc., 1999, 82(3):625-636.
[11]Lee K N, Miller R A, Jabocson N S. J. Am. Ceram. Soc., 1995, 78(3):705-710.
[12]Lee K N, Miller R A. Surface and Coatings Technology, 1996, 86-87:142-148.
[13]Ueno Shunkichi, Ohji Tatsuki, Lin Hua-Tay. Journal of the European Ceramic Society, 2008, 28(2):431-435.
[14]Krishnamurthy R, Sheldon B W, Haynes J A. J. Am. Ceram. Soc., 2005, 88(5):1099-1107.
[15]Jacobson N S, Opila E J, Lee K N. Current Opinion in Solid State and Materials Science, 2001, 5(4):301-309.
[16]Lee K N, Fox D S, Eldridge J I, et al. J. Am. Ceram. Soc., 2003, 86(8):1299-1306.
[17]Ramachandra C, Lee K N, Tewari S N. Surface and Coatings Technology, 2003, 172(2-3):150-157.
[18]Lee K N, Fox D S, Bansal N P. Journal of the European Ceramic Society, 2005, 25(7):1705-1715.
[19]Lee K N. Surface and Coatings Technology, 2000, 133-134:1-7.
[20]Shunkichi Ueno, Doni Jayaseelan, Tatsuki Ohji. Ceramics International, 2006, 32(4):451-455.
[21]Ueno Shunkichi, Ohji Tatsuki, Lin Hua-Tay. Journal of Ceramic Processing Research, 2006, 7(1):20-23.
[22]Sambasivan S, Steiner K A, Rangan K K. Aluminum phosphate coatings, US: 0206267 A1 2004.
[23]Sambasivan S, Steiner K A. Aluminum phosphate compounds, compositions, materials and related metal coatings, US: 0138058 A1 2004.
[24]Sambasivan S, Rangan K K. Aluminum phosphate compounds coatings, related composites and applicantions, US: 0057407 A1 2006.
Outlines

/