Research Paper

Preparation and Photocatalytic Properties of Layered K-Fe-Ti Metal Oxide

  • LI Qun-Wei ,
  • SANG Li-Xia ,
  • XU Li-Xian ,
  • MA Chong-Fang ,
  • SUN Ji-Hong
Expand
  • 1. Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, Beijing 100022, China; 2. Department of Chemistry and Chemical Engineering, Beijing University of Technology, College of Energy and Environmental Engineering, Beijing 100022, China

Received date: 2005-09-19

  Revised date: 2005-12-26

  Online published: 2006-09-20

Abstract

Layered K-Fe-Ti metal oxide, a new kind of photocatalyst was obtained via a solid-state reaction route with the mixture of KNO3, Fe(NO3)3·9H2O, TiO2. The effects of preparing parameters such as material ratio and reaction temperature etc, on the structure characteristics and crystal morphology
were investigated by using XRD, SEM and TEM technology. Meanwhile, under UV light irradiation, the native photocatalyst was found to evolve H2 from pure water. The result indicates that not only the photocatalyst prepared has high photocatalytic activity, but aslo its visible light absorption is notable with comparison of that by using market TiO2.

Cite this article

LI Qun-Wei , SANG Li-Xia , XU Li-Xian , MA Chong-Fang , SUN Ji-Hong . Preparation and Photocatalytic Properties of Layered K-Fe-Ti Metal Oxide[J]. Journal of Inorganic Materials, 2006 , 21(5) : 1263 -1267 . DOI: 10.3724/SP.J.1077.2006.01263

References

[1] Fujishima A, Honda K. Nature, 1972, 238: 37--38.
[2] Linsebigler A L, Lu G, Yates J T. Chem. Rev., 1995, 95: 735--758.
[3] Avudaithai M, Kutty T R N. Materials Research Bulletin, 1989, 24: 1163--1170.
[4] Karakitson K E, Verykios X E. Journal of Physical Chemistry, 1993, 97: 1184--1189.
[5] Luo H M, Takata T, Lee Y, et al. Chemistry of Materials, 2004, 16: 846--849.
[6] Sayama K, Arakawa H. Journal of Chemical Society, 1997, 93 (8): 1647--1654.
[7] Ashokkumar M. International Journal of Hydrogen Energy, 1998, 23 (6): 427--438.
[8] Moon S C, Mametsuka H, Suzuki E, et al. Catalysis Today, 1998, 45: 74--79.
[9] Moon S C, Mametsuka H, Tabata S, et al. Catalysis Today, 2000, 58: 125--132.
[10] Yin S, Wu J H, Aki M, et al. International Journal of Inorganic Materials, 2000, 2: 325--331.
[11] Asahi R, Ohwaki T, Aoki K, et al. Science, 2001, 293: 269--271.
[12] Li X, Li F. Environ Sci Technol, 2001, 35: 2381--2387.
[13] Khan S U M, Al- Shahry M, Ingler Jr W B. Science, 2002, 297: 2243--2245.
[14] Ohno T, Mitsui T. Chem Lett, 2003, 32: 364--365.
[15] 杨亚辉, 陈启元, 尹周澜, 等. 化学进展, 2005, 17 (4): 631--642.
[16] Beck J S, Vartuli J C, Roth W J, et al. J. Am. Chem. Soc., 1992, 114: 10834--10843.
[17] O’Brien S, Keates J M, Barlow S, et al. Chem. Mater, 1998, 10: 4088--4099.
[18] Grouli D, Mercey C, Raveau B, et al. Journal of Solid Chemistry, 1980, 32: 289--296.
[19] 谢鲜梅, 姚以朝, 刘晋华. 太原工业大学学报, 1991, 22 (3): 51--55.
[20] Tsuyoshi T, Akira T, Michikazu H, et al. Catalysis Today, 1998, 44, 17--26.
Outlines

/