Research Paper

Microstructure and Mechanical Properties of TiN/Si3N4 Nanocomposites

  • KONG Ming ,
  • ZHAO Wen-Ji ,
  • WU Xiao-Yan ,
  • WEI Lun ,
  • LI Ge-Yang
Expand
  • State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200030, China

Received date: 2006-06-22

  Revised date: 2006-08-31

  Online published: 2007-05-20

Abstract

A microstructure investigation of TiN/Si3N4 nanocomposite films with high hardness was performed by means of high-resolution transmission electron microscope, and a result far from the nc-TiN/a-Si3N4 model was presented. Instead of the isotropic one, TiN was pronounced nanocrystalline columnar grains with dimensions of <10nm in width and >100nm in length. Immiscible Si3N4 interfacial phases between TiN nanocolumns with a thickness of about 0.5--0.7nm existed in nanocrystalline structure and formed coherent interfaces with adjacent TiN nanocrystals. A succedent simulation employing two-dimensional TiN/Si3N4 nanomultilayers also implied that due to the template effect of crystalline TiN layers, sputter-deposited amorphous Si3N4 was forced to crystallize and grow epitaxially with TiN layers when its thickness was less than 0.7nm, accompanied by a significant enhancement in film’s hardness. Due to the short-range nature of the template effect of TiN layers, the
crystalline Si3N4 gradually transformed into amorphous when its thickness exceeded 1.0nm and the coherent interfaces were destroyed as a consequence, with a simultaneous film’s hardness decline. By comparing the microstructure and corresponding hardness response of TiN/Si3N4 nanocomposite films with that of the nanomultilayered ones, a new explanation on hardening mechanism of TiN/Si3N4 nanocomposites was proposed.

Cite this article

KONG Ming , ZHAO Wen-Ji , WU Xiao-Yan , WEI Lun , LI Ge-Yang . Microstructure and Mechanical Properties of TiN/Si3N4 Nanocomposites[J]. Journal of Inorganic Materials, 2007 , 22(3) : 539 -544 . DOI: 10.3724/SP.J.1077.2007.00539

References

[1] Veprek S, Niederhofer A, Moto K, et al. Surf. Coat. Technol., 2000, 133-134: 152--159.
[2] Veprek S, Reiprich S, Li S Z Appl. Phys. Lett., 1995, 66: 2640--2642.
[3] Prochazka J, Karvankova, Martiza G J, et al. Mater. Sci. Eng. A. 2004, 384: 102--109.
[4] 张晨辉, 雒建斌, 李文治, 等. 物理学报, 2004, 53: 182--187.
[5] Veprek S, Maritza G J, Heijman V, et al. Thin Solid Films, 2005, 476: 1--29.
[6] Christiansen S, Albrecht M, Strunk H P, et al. J. Vac. Sci. Technol., 1998, B (16): 19--22.
[7] Niederhofer A, Bolom T, Nesladek P, et al. Surf. Coat. Technol., 2001, 146-147: 183--188.
[8] Meng W J, Zhang X D, Shi B, et al. Surf. Coat. Technol., 2003, 163-164: 251--259.
[9] Kauffmann F, Dehm G, Schier V, et al. Thin Solid Films, 2005, 473: 114--122.
[10] Hu X P, Han Z H, Li G Y, et al. J. Vac. Sci. Technol., 2002, A (20): 1921--1926.
[11] 田家万, 韩增虎, 赖倩茜, 等. 机械工程学报, 2003, 39 (6): 71--74.
[12] Veprek S, Karvankova P, Maritza G J, et al. J. Vac. Sci. Technol., B 2005, 23 (6): L17.
[13] 劳技军, 孔明, 张惠娟, 等. 物理学报, 2004, 53 (6): 1961--1966.
[14] 魏仑, 梅芳华, 邵楠, 等. 物理学报, 2005, 54 (4): 1742--1747.
[15] 吴大维, 付德君, 毛先唯, 等. 物理学报, 1999, 48 (5): 904--908.
[16] Zhang Z Y, Lagally M G. Science, 1997, 276: 377--383.
[17] Koehler J S. Phys. Rev. B, 1970, 2: 547--550.
[18] Andson P M, Li C. Nanostructured Mate, 1995, 5: 349--362.
[19] Chu X, Barnett. Thin Films, 1995, 382: 291--296.
[20] Sooderberg H, Odéen M, Molina-Aldareguia J M, et al. J. Appl. Phys., 2005, 97 (114327): 1--8.
Outlines

/