Research Paper

Failure Mechanism of C/SiC Composites under Stress in Oxidizing Environments

  • LIU Xiao-Ying ,
  • ZHANG Jun ,
  • ZHANG Li-Tong ,
  • XU Yong-Dong ,
  • LUAN Xin-Gang
Expand
  • National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2005-08-28

  Revised date: 2006-01-03

  Online published: 2006-09-20

Abstract

Stressed oxidation testing on C/SiC composites in dry and wet oxygen environments under cyclic and constant stress was conducted in the present study. Experimental results and microstructures of fracture surfaces analyzed
by SEM show that the C/SiC composites have a better oxidation resistance
and a longer life under fatigue testing than under creep testing. In dry oxygen environment, the failure of C/SiC composites under creep testing is mainly due to the oxidation of carbon fibers. While in wet oxygen ambient, the fracture of C/SiC composites under creep testing is caused by the failure of SiC matrix because the water vapor accelerates the oxidation of SiC.

Key words: C/SiC; fatigue; creep; oxidation

Cite this article

LIU Xiao-Ying , ZHANG Jun , ZHANG Li-Tong , XU Yong-Dong , LUAN Xin-Gang . Failure Mechanism of C/SiC Composites under Stress in Oxidizing Environments[J]. Journal of Inorganic Materials, 2006 , 21(5) : 1191 -1196 . DOI: 10.3724/SP.J.1077.2006.01191

References

[1] Lamicq P. Adv. Compos. Mater. Off. J. Jpn. Soc. Compos. Mater., 1999, 8 (1): 47--53.
[2] Han D, Qiao S R, Li M, et al. Acta. Metal. Sin., 2004, 17 (4): 569--574.
[3] 杜双明, 乔生儒, 纪岗昌, 等. 材料工程, 2002, 9: 22--25.
[4] Dalmaz A, Reynaud P, Rouby D, et al. Key Eng. Mat., 1999, 164-165: 325--328.
[5] Morris W L, Cox B N, Marshall, D B, et al. J. Am. Ceram. Soc., 1994, 77 (3): 792--800.
[6] Boitier G, Vicens J, Chermant J L. Scripta Mater. 1997, 37 (12): 1923--1929.
[7] Boitier G, Vicens J, Chermant J L. Mater. Sci. Eng. A., 2000, 279 (1-2): 73--80. [8] Boitier G, Chermant J L, Vicens J. Mater. Sci. Eng. A., 2000, 289 (1): 265--275.
[9] Boitier G, Vicens J, Chermant J L. Mater. Sci. Eng. A., 2001, 313 (1-2): 53--63. [10] 乔生儒, 杨忠学, 韩 栋, 等. 材料工程, 2001, 4: 34--36.
[11] Lamouroux F, Camus G, Thebault J. J. Am. Ceram. Soc., 1994, 77 (8): 2049--2057.
[12] Lamouroux F, Naslain R, Jouin J M. J. Am. Ceram. Soc., 1994, 77 (8): 2058--2068.
[13] Cheng L, Xu Y, Zhang L, et al. Carbon, 2001, 39 (8): 1127--1133.
[14] Cheng L, Xu Y, Zhang L, et al. Carbon, 2000, 38 (15): 2103--2108.
[15] Yin X, Cheng L, Zhang L, et al. Compos. Sci. Technol., 2001, 61 (7): 977--980.
[16] Naslain R. Solid State Ionics, 1997, 101-103: 959--973.
[17] Lamouroux F, Bertrand S, Pailler R, et al. Compos. Sci. Technol., 1999, 59 (7): 1073--1085.
[18] Ismail M K, Hurley W C. Carbon, 1992, 30 (3): 419--427.
[19] Fu R, Zeng H, Lu Y. Carbon, 1994, 32 (4): 593--598.
[20] Gulbransen E A, Jansson S A. Oxid. Metals, 1972, 4 (3): 181--201.
[21] Opila E J. J. Am. Ceram. Soc., 1994, 77 (3): 730--736.
[22] Vix-Guterl C, Grotzinger C, Dentzer J, et al. J. Eur. Ceram. Soc., 2001, 21 (3): 315--323.
[23] Halbig M C. Ceram. Eng. Sci. Proc., 2002, 23 (3): 419--426.
[24] Halbig M C. Ceram. Eng. Sci. Proc., 2001, 22 (3): 625--632.
[25] Halbig M C, Cawley J D. Ceram. Eng. Sci. Proc., 2000, 21 (3): 219--226.
[26] Jacobson N S. J. Am. Ceram. Soc., 1993, 76 (1): 13--28.
[27] 唐纳特, J.B.等著; 李仍元等译. 碳纤维. 科学出版社. 1989. 11--12.
[28] Lackey W J, Hanigofsky J A, Freeman G B, et al. J. Am. Ceram. Soc., 1995, 78 (6): 1564--1570.
[29] Deal B E, Grove A S. J. Appl. Phys., 1965, 36 (12): 3770--3778.
[30] Cappelen H, Johansen K H, Motzfeld K. Acta Chem. Scand. A, 1981, 35: 247--254.
[31] Irene E A, Ghez R. J. Electrochem. Soc., 1977, 124 (11): 1757--1761.
[32] Yin X, Cheng L, Zhang L, et al. Mater. Sci. Eng. A,. 2003, 348 (1-2): 47--53.
Outlines

/