The Y3+ co-doping to the 0.1 and 1.0mol% Er3+-doped Al2O3 powders with
the molar ratio of (0~10): 1 for Y3+ and Er3+ was performed in the non-aqueous sol-gel progress using the aluminium isopropoxide Al(OC3H7)3-derived Al2O3 sols with the addition of hydrated erbium nitrate Er(NO3)3·5H2O together with yttrium nitrate Y(NO3)3·5H2O. The effects of Y3+ co-doping on the phase structure and photoluminescence (PL) of the Er3+-doped Al2O3 powders were investigated by X-ray diffraction (XRD) and PL measurement. The Y3+ addition in the Er3+-doped Al2O3 powders suppressed the crystallization of γ-(Er,Al)2O3 and θ-(Er,Al)2O3 phases. The enhancement of the PL properties by Y3+ co-doping is related to Er3+ concentration in the Er3+-doped Al2O3 powders. For the 1mol% Er3+-doped Al2O3 powders, co-doping Y3+ with the concentration up to 10mol% is incorporated in the mixture of γ and θ phases, resulting in an increase of both the intensity and full width at half maximum (FWHM) of PL spectra. The PL intensity for the 1mol% Er3+-doped Al2O3 powders by 10mol% Y3+ co-doping is enhanced by 50 times and almost 10 times higher than that of the 0.1mol%Er3+-doped Al2O3 powders, and the FWHM is enhanced by a gain of 15nm in comparison with those for the 1mol% Er3+-doped powders. However, for the 0.1mol% Er3+-doped Al2O3 powders, no significant change in the intensity and FWHM of PL spectra is observed with all the Y3+ incorporations. The improvement of intensity and FWHM of PL spectra for the Er3+-doped Al2O3 powders by Y3+ co-doping is attributed to the improved dispersion and disordered local structure around Er3+ in the matrix of the Er3+-doped Al2O3 powders, respectively.
WANG-Hui
,
LEI-Ming-Kai
. Enhanced Photoluminescence of Er3+-doped Al2O3 Powders by Y3+[J]. Journal of Inorganic Materials, 2006
, 21(4)
: 803
-808
.
DOI: 10.3724/SP.J.1077.2006.00803
1 Polman A. J. Appl. Phys., 1997, 82 (1): 1-39.
2 Benatsou M, Capoen B, Bouazaoui M, et al. Appl. Phys. Lett., 1997, 71 (4): 428-430.
3 Coffa S, Tsybeskov L. MRS Bull., 1998, 23 (4): 16-17.
4 Buchal Ch, Siegrist Th, Jacobson D C, et al. Appl. Phys. Lett., 1996, 68 (4): 438-440.
5 Kurokawa Y, Ishizaka T, Ikoma T, et al. Chem. Phys. Lett., 1998, 287 (5-6): 737-741.
6 Ishizaka T, Kurokawa Y, Makino T, et al. Opt. Mater., 2001, 15 (4): 293-299.
7 Chryssou C E, Pitt C W. IEEE J. Quant. Electron, 1998, 34 (2): 282-285.
8 de Castro M J, Serna R, et al. Nucl. Instrum. Methods Phys. Res. B, 2000, 166: 793-797.
9 van den Hoven G N, Snoek E, Polman A. Appl. Phys. Lett., 1993, 62 (24): 3065-3067.
10 Gaponenko N V, Mudryi A V, Sergeev O V, et al. Spectrochimica Acta. A, , 1998, 54 (13): 2177-2182.
11 Arai K, Namikawa H, Kumata K, et al. J. Appl. Phys., 1986, 59 (10): 3430-3436.
12 Ryu C K, Choi H, Kim K. Appl. Phys. Lett., 1995, 66 (19): 2496-2498.
13 Ainslie B J, Craig S P, Davey S T. Mater. Lett., 1987, 5 (4): 143-146.
14 Zhou Y, Lam Y L, Wang S S, et al. Appl. Phys. Lett., 1997, 71 (5): 587-589.
15 Ting C C, Chen S Y, Hsieh W F, et al. Appl. Phys., 2001, 90 (11): 5564-5569.
16 Babonneau F, Coury L, Livage J. J. Non-Crys. Solids, 1990, 121 (1-3): 153-157.
17 Yang T, Lei M K. Mater. Chem. Phys., 2006, 95 (2-3): 211-217.
18 Wang X J, Lei M K, Yang T, et al. J. Mater. Res., 2003, 18 (10): 2401-2405.
19 van den Hoven G N, Snoek E, Polman A, et al. J. Appl. Phys., 1996, 79 (3): 1258-1266.
20 Zhou R S, Snyder R L. Acta Crystallographica, 1991, 47(5): 617-630.
21 Levin I, Bendersky L A, Brandon D G, et al. Acta Materialia, 1997, 45(9): 3659-3669.
22 王兴军, 曹保胜, 雷明凯, 等. 光子学报, 2004, 33(8): 935-938.