Journal of Inorganic Materials >
Hardening Mechanism for Nano-multilayer Films
1. College of Science, Yanshan University, Qinhuangdao 066004, China;
2. College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Received date: 2005-07-11
Revised date: 2005-09-12
Online published: 2006-07-20
The study of the hardening mechanism for the nano-multilayer films is the foundation for the preparation of those films. Several different models were proposed to interpret the super-hard effect in the nano-multilayer films, though they cannot interpret all the phenomena in those films. The progress of the research on the superhardness effect in the nano-multilayer films was reviewed.
It shows that all the mechanisms are related to the movement of the dislocation. The difference of the elastic modulus between the two materials plays the important role for the superhadness effect in the nano-multilayer films, while the alternated strain field plays the less important role. The developmental directions and the problems for the nano-multilayer films were also discussed.
Key words: nano-multilayer films; superhadness effect
DU Hui-Jing , TIAN Yong-Jun . Hardening Mechanism for Nano-multilayer Films[J]. Journal of Inorganic Materials, 2006 , 21(4) : 769 -775 . DOI: 10.3724/SP.J.1077.2006.00769
1 Yang W M C, Tsakalakos T, Hilliard J E. J. Appl. Phys., 1977, 48(2): 876-879.
2 Helmersson J, Todorova S, Barnett S A, et al. J. Appl. Phys., 1987, 62(2): 841-844.
3 Shinn M, Hultman L, Barnett S A, et al. J. Mate. Res., 1992, 7(4): 901-911.
4 Chu X, Barnett S A, Wong M S, et al. Surf. Coat. Technol., 1993, 57: 13-17.
5 Alan F, Jankowski, et al. J. App. Phys., 1992, 71: 1782-1789.
6 Cammarata R C, Sieradzki K. Physics Review Letters, 1989, 62: 2005-2008.
7 李戈扬, 韩增虎, 田家万, 等. 稀有金属材料与工程, 2003, 32(1): 2-4.
8 张惠娟, 袁家栋, 许辉, 等. 电子显微学报, 2004, 23(4): 374.
9 Helmersson U, Todorova S, Barnett S A, et al. J. App. Phys., 1987, 62(2): 481-484.
10 Mirkarimi P B, Barnett S A, Hubbard K M, et al. Mater. Res., 1994, 9(6): 1456-1461.
11 Shinn M, Barnett S A. App. Phys. Lett., 1994, 64(1): 61-67.
12 Koehler J S. Phys. Rev. B, 1970, 2: 547-551.
13 鼓志坚, 齐龙浩, 刘大鹏, 等, 材料科学与工程学报, 2003, 21(1): 110-115.
14 劳技军, 孔明, 张惠娟, 等, 物理学报, 2004, 53(6): 1962-1966.
15 Li D, Lin X W, Cheng S C. Appl. Phys. Lett., 1996, 68: 1211-1216.
16 Wu M L, Lin X W, David V P, et al. J. Vac. Sci. Technol. A, 1997, 15: 946-952.
17 Veprek S. J. Vac. Sci. Technol. A, 1999, 17(5): 2401-2420.
18 Anderson P M, Foecke T, Hazzledine P M. MRS Bull., 1999, 24(2): 27-34.
19 劳技军, 胡晓萍, 虞晓江, 等, 物理学报, 2003, 53(9): 2259-2263.
20 Veprek S, et al. Surf. Coat. Technol., 2000, 133-134: 152-159.
21 Martin P J, Bendavid A. Surf. Coat. Technol., 2002, 163-164: 245-250.
22 Liu Z J. Acta Mater., 2004, 52: 729-736.
23 Engstrom C, Birch J, Hultman L, et al. J. Vac. Technol., 1999, A17: 2920-2927.
24 Liu Y, Singh P, Poole K, et al. J. Vac. Technol., 1997, B15: 1990-1994.
25 Schneider J M, Sproul W D, Sproul A A, et al. J. Vac. Sci. Technol., 1997, A15(3): 1084-1089.
/
〈 |
|
〉 |