A CuO nanoflower film was fabricated on copper by controlled surface oxidation in KOH aqueous solutions with an oxidant K2S2O8 and subsequent heat treatment in air. Results show that the nanoflower is formed by self-assembly of tens of CuO nanosheets. The nanosheet is about 2μm in length, 120nm in width, and 12nm in thickness. After fluorination treating, the nanoflower film exhibits super-hydrophobic properties, with a water contact angle of about 158°. The possible mechanism was proposed on the growth of the CuO nanoflowers. Also, the wettability of the CuO films was discussed on the basis of Cassie theories.
QIAN Bai-Tai
,
SHEN Zi-Qiu
. Super-hydrophobic CuO Nanoflowers by Controlled Surface Oxidation on Copper[J]. Journal of Inorganic Materials, 2006
, 21(3)
: 747
-752
.
DOI: 10.3724/SP.J.1077.2006.00747
1 Barthlott W, Neinhuis C. Planta, 1997, 202 (1): 1-8.
2 Onda T, Shibuichi S, Satoh N, et al. Langmuir, 1996, 12 (9): 2125-2127.
3 Gao X F, Jiang L. Nature, 2004, 432: 36.
4 Erbil H Y, Demirel A L, Avci Y, et al. Science, 2003, 299: 1377-1380.
5 Richard D, Clanet C, QuéréD. Nature, 2002, 417: 811.
6 Callies M, QuéréD. Soft Matter, 2005, 1 (1): 55-61.
7 江雷. 科技导报, 2005, 23 (2): 4-8.
8 Nakajima A, Hashimoto K, Watanabe T. Monatsh. Chem., 2001, 132: 31-41.
9 Hou H, Xie Y, Li Q. Cryst. Growth Des., 2005, 5 (1): 201--206.
10 Zhang W, Wen X, Yang S, et al. Adv. Mater., 2003, 15 (10): 822-825.
11 Zhang W, Wen X, Yang S. Inorg. Chem., 2003, 42 (16): 5005-5014.
12 Yu H, Zhang Z, Han M, et al. J. Am. Chem. Soc., 2005, 127: 2378-2379.
13 Zhang Z, Yu H, Shao X, et al. Chem. Eur. J., 2005, 11: 3149-3154.
14 Wu J M, Hayakawa S, Tsuru K, et al. Scripta Mater., 2002, 46: 101-106.
15 Wu J M. J. Cryst. Growth, 2004, 269: 347-355.
16 Vayssieres L. Int. J. Nanotechnology, 2004, 1 (1/2): 1-41.
17 Cassie A, Baxter S. Trans. Faraday Soc., 1944, 40: 546-551.