Research Paper

Crystallization of Amorphous and Superhardness Effect in Nano-multilayer Films

  • KONG Ming ,
  • YUE Jian-Ling ,
  • LI Ge-Yang
Expand
  • (State Key Lab of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200030, China)

Received date: 2005-11-30

  Revised date: 2006-02-24

  Online published: 2006-11-20

Abstract

Template-induced epitaxial crystallization of SiC, TiB2 and SiO2 in TiN/SiC, TiN/TiB2 and TiN/SiO2 nano-multilayer films and its influence on mechanical properties of the corresponding films were investigated. Results reveal that amorphous SiC, TiB2 and SiO2, which are more favorable under sputtering conditions, crystallize at smaller layer thicknesses due to the template effect of c-TiN layers. In particular, SiC crystallizes out in the face-centered cubic structure when its thickness is less than 0.6nm, which improves the crystal quality and structural integrity of the films; While TiB2, with thickness less than 2.9nm, forms hcp structure. The epitaxial orientation relationship between TiN and TiB2 is {111} TiN//{0001} TiB2, <100> TiN//<11-20> TiB2; SiO2, different from the above two, forms fcc pseudo-crystalline structure under a thickness of 0.9nm. With the crystallization of SiC, TiB2 and SiO2, hardness anomalous enhancement, i.e. superhardness effect, appears in those films. This phenomeon of hardness enhancement disappears rapidly when further increase the thickness of SiC, TiB2 and SiO2 layers, and at the same time, crystallines of SiC, TiB2 and SiO2 transform into their amorphous forms, respectively. The formation of these relatively soft amorphous layers, which blocks the coherent growth of the multilayer films, is the main reason of hardness decline at large SiC, TiB2 and SiO2 layer thicknesses.

Cite this article

KONG Ming , YUE Jian-Ling , LI Ge-Yang . Crystallization of Amorphous and Superhardness Effect in Nano-multilayer Films[J]. Journal of Inorganic Materials, 2006 , 21(6) : 1292 -1300 . DOI: 10.3724/SP.J.1077.2006.01292

References

[1] Helmersson U, Todorora S, Barnett S A, et al. J. Appl. Phys., 1987, 62 (2): 481--484.
[2] Chu X, Barnett S A, Wong M S, et al. Surf. Coat. Technol., 1993, 57: 13--18. [3] Setoyama M, Nakayama A, Tanaka M, et al. Surf. Coat. Technol., 1996, 86--87(1--3): 225--230.
[4] Nordin M, Larsson M, Hogmark S. Surf. Coat. Technol., 1998, 106(2--3): 234--241.
[5] Madan M, Kim I W, Cheng S C, et al. Phys. Rev. Lett., 1997, 78(9): 1743--1746.
[6] Yashar P, Chu X, Barnett S A, et al. Appl. Phys. Lett., 1998, 72(8): 987--989. [7] Veno M, Onodera A, Shimomura O, et al. Phys. Rev. B., 1992, 45: 10123--10126.
[8] Ravindra P, Amin S, Max S, et al. J. Mater. Res., 1993, 8: 1922--1927.
[9] Wang Y Y, Wong M S, Chia W J, et al. J. Vac. Sci. Technol. A, 1998, 16(6): 3341--3347.
[10] 胡晓萍, 李戈扬, 顾明元. 材料研究学报, 2003, 17(3): 326--331.
[11] Li G Y, Lao J J, Tian J W, et al. J. Appl. Phys., 2004, 95(1): 92--96.
[12] Kim I W, Li Q, Marks L D, et al. Appl. Phys. Lett., 2001, 78(7): 892--894.
[13] 吴大维, 付德君, 毛先唯, 等. 物理学报, 1999, 48(5): 904--912.
[14] Li D, Chu X, Cheng S C, et al. Appl. Phys. Lett., 1995, 67(2): 203--205.
[15] Li D, Lin X W, Cheng S C, et al. Appl. Phys. Lett., 1996, 68(9): 1211--1213.
[16] Kim C, Qadri S B, Scanlon M R, et al. Thin Solid Films, 1994, 240: 52--55.
[17] 田家万, 韩增虎, 赖倩茜, 等. 机械工程学报, 2003, 39(6): 71--74.
[18] Sproul W D. Science, 1996, 273(16): 889--892.
[19] Yashar P, Barnett S A, Hultman L, et al. J. Mater. Res., 1999, 14(9): 3614--3622.
[20] Sproul W D. Vacuum, 1998, 51(4): 641--646.
[21] 冯端, 师昌绪, 刘治国. 材料科学导论, 第一版, 北京: 化学工业出版社, 2002. 588--589.
[22] Koehler J S. Phys. Rev. B, 1970, 2(2): 547--551.
[23] Kato M, Mori T, Schwartz L H. Acta. Metall., 1980, 28(3): 285--290.
[24] Andson P M, Li C. Nanostructure Mate., 1995, 5(3): 349--362.
Outlines

/