Research Paper

Ionic Conductivity and Microstructure of Sr- and Mg-doped LaGaO3

  • SHI Min ,
  • XU Yu-Dong ,
  • LIU Ning ,
  • WANG Can ,
  • MAJEWSKI P
Expand
  • 1. School of Materials Science & Engineering, Hefei University of Technology, Hefei 230009, China;
    2. Max-Planck-Institute for Metals Research, Stuttgart 70569, Germany

Received date: 2004-12-22

  Revised date: 2005-10-31

  Online published: 2006-05-20

Abstract

Samples of Sr- and Mg-doped LaGaO3 (LSGM) were prepared by using a solid state reaction method. The conductivities of LSGM with various additions of Sr and Mg were dealt with. The results show that the ionic conductivities of LSGM increase with the increase of x or y at first, and after reaching a maximum, the
ionic conductivities of LSGM decrease with the further increase of x or y. It can be seen that Sr- and Mg-doped LaGaO3 materials with the highest conductivity, σ=0.148S/cm at 800℃, are LSGM1520 and LSGM2015. For the two compositions, LSGM materials are composed of single phase-LaGaO3 without secondary phases. It can also be seen that ionic conductivities of LSGM increase with the increase of testing temperature and the curves of ln(σ T) with 1/T reveal two straight lines intersecting at T*(T* is about 670℃) and activation energy of oxygen-vacancy motion at lower temperatures (TT*).

Cite this article

SHI Min , XU Yu-Dong , LIU Ning , WANG Can , MAJEWSKI P . Ionic Conductivity and Microstructure of Sr- and Mg-doped LaGaO3[J]. Journal of Inorganic Materials, 2006 , 21(3) : 605 -611 . DOI: 10.3724/SP.J.1077.2006.00605

References

1 Sammers N M, Tompsett G A, Phillips R J, et al. Solid State Ionics, 1998, 111 (1-2): 1-7.
2 Dotelli G, Sora I N, Schmid C, et al. Solid State Ionics, 2002, 152-153: 509-515.
3 Chen X J, Khor K A, Chan S H, et al. Materials Science and Engineering A, 2002, 335 (1-2): 246-252.
4 Horita T, Yamaji K, Sakai N, et al. Electrochim. Acta, 2001, 46 (12): 1837-1845.
5 Ishihara T, Shibayama T, Nishiguchi H, et al. J. Mater. Sci., 2001, 36 (5): 1125-1131.
6 汪灿, 刘宁, 石
敏, 等. 合肥工业大学学报, 2004, 19 (6): 1176-1180.
7 Stambouli A B, Traversa E. Renewable and Sustainable Energy Review, 2002, 6 (5): 433-455.
8 Huang K, Wan J, Goodenough J B. J. Mater. Sci., 2001, 36 (5): 1093-1098.
9 Choy K, Bai W, Charojrochkul S, et al. Journal of Power Sources, 1998, 71 (1-2): 361-369.
10 Djurado E, Labeau M. J. Eur. Ceram. Soc., 1998, 18 (10): 1397-1404.
11 Ishihara T, Matsuda H, Takita Y. Solid State Ionics, 1996, 86-88 (1): 197-201.
12 Mathews T, Sellar J R, Muddle B C, et al. Chem. Mater., 2000, 12 (4): 917-922.
13 Mathews T, Sellar J R. Solid State Ionics, 2000, 135 (1-4): 411-417.
14 Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116 (9): 3801-3803.
15 Choi S M, Lee K T, Kim S, et al. Solid State Ionics, 2000, 131 (3-4): 221-228.
16 刘世友, 李京萍. 新能源, 1999, 21 (2): 39-41.
17 Yamaji K, Negishi H, Horita T, et al. Solid State Ionics, 2000, 135 (1-4): 389-396.
18 Karim D P, Aldred A T. Phys. Rev., B, 1979, 20 (6): 2255-2263.
19 Huang K, Robin S, John B, et al. J. Am. Ceram. Soc., 1998, 81 (10): 2565-2575.
20 Huang K, Feng M, Goodenough J B. J. Am. Ceram. Soc., 1996, 79 (4): 1100-1104.
Outlines

/